1. Identify which method from among w-subs, parts, partial fractions, trig sub, improper, calc 1 , not elementary (i.e. approximation methods)
a) $\int_{0}^{1} e^{-x^{2}} d x$
b) $\int x e^{-x^{2}} d x$
c) $\int x e^{-x} d x$
d) $\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x$
e) $\int \frac{x}{\sqrt{4-x^{2}}} d x$
f) $\int \frac{3}{4-x} d x$
g) $\int \frac{3}{\sqrt{4-x}} d x$
h) $\int \frac{1}{4-x^{2}} d x$
i) $\int \frac{1}{1+x^{2}} d x$
j) $\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos ^{2}(x)} d x$
k) $\int_{0}^{\frac{\pi}{2}} \frac{1}{\cos ^{2}(x)} d x$
2. Match the technique we could successfully use to compute the antiderivative, as per instructions. Circle your final response or write it on the line.

Technique	What I want you to show me (don't integrate the final integral!)
w-Sub	$w, d w$, and the integral with respect to w
Parts	$u, u^{\prime}, v, v^{\prime}$, and $u v-\int u^{\prime} v d x$
Partial Fractions	the expansion, and the system of linear equations to solve for A, B
Trig Sub	triangle pic, $x \& d x$, integral with respect to θ reduced
Improper	limit integral set up

3. Evaluate the following integrals and show work and/or reasoning, including limits-but only if they apply. If numbers need to be plugged in you don't need to simplify, ie $\ln |5-3|$ or similar is ok here. If it is improper, do clarify whether the integral converges or diverges. Circle your final response.
