1. Identify which method from among w-subs, parts, partial fractions, trig sub, improper, calc 1, not elementary (i.e. approximation methods)

a)
$$\int_{0}^{1} e^{-x^{2}} dx$$
b)
$$\int xe^{-x^{2}} dx$$
c)
$$\int xe^{-x} dx$$
d)
$$\int \frac{x^{2}}{\sqrt{4-x^{2}}} dx$$
e)
$$\int \frac{x}{\sqrt{4-x^{2}}} dx$$
f)
$$\int \frac{3}{4-x} dx$$
g)
$$\int \frac{3}{\sqrt{4-x}} dx$$
h)
$$\int \frac{1}{4-x^{2}} dx$$
i)
$$\int \frac{1}{1+x^{2}} dx$$
j)
$$\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^{2}(x)} dx$$

 $k) \int_0^{\frac{\pi}{2}} \frac{1}{\cos^2(x)} dx$

2. Match the technique we could successfully use to compute the antiderivative, as per instructions. Circle your final response or write it on the line.

Technique	What I want you to show me (don't integrate the final integral!)
w-Sub	w, dw, and the integral with respect to w
Parts	$u, u', v, v', \text{ and } uv - \int u'vdx$
Partial Fractions	the expansion, and the system of linear equations to solve for A, B
Trig Sub	triangle pic, $x \& dx$, integral with respect to θ reduced
Improper	limit integral set up

3. Evaluate the following integrals and show work and/or reasoning, including limits—but only if they apply. If numbers need to be plugged in you don't need to simplify, ie $\ln |5-3|$ or similar is ok here. If it is improper, do clarify whether the integral converges or diverges. Circle your final response.