
Test 2

7.5, 8.1, 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3
related test 1 material and material from prior classes

Local to Global Perspectives
Analyze small pieces to understand the big picture. Examples:

numerical integration via rectangles
area between two curves via rectangles
volume by cylindrical disk or rectangular box slices
total work via the work for each slice
= force for each slice × displacement of that slice
series diverges when sequence terms do not get smaller.
(when they do get smaller anything can happen)
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7.5 Numerical Methods
Approximates integrals we can’t evaluate directly, including
discrete data
n= number of intervals, 4x = b−a

n
Left(4) = f (x0)4x + f (x1)4x + f (x2)4x + f (x3)4x left endpoints

Right(4) = f (x1)4x + f (x2)4x + f (x3)4x + f (x4)4x right points

Trap(4) = Left(4)+Right(4)
2

Mid(4) =
f (x0+x1

2 )4x + f (x1+x2
2 )4x + f (x2+x3

2 )4x + f (x3+x4
2 )4x midpoints
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8.1 Area and Volume (Slice and Conquer)
Area by slicing into rectangles with known length
Volume by slicing into regions we know the area of
Riemann sums with 4x or 4y →

∫ b
a dx or

∫ b
a dy∑

π(2
5yi)

24y →
∫ 1

0
5(

2
5

y)2dy

What I want you to show me... picture, slice, Riemann sum,
integral
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8.1 Area Steps

1 Sketch a graph of the functions to find the enclosed region
2 Sketch a picture of a Riemann slice on your graph.
3 Base of the rectangle? Circle: ∆x or ∆y
4 Which function is larger in that variable (top for x, right for

y)?
5 What is the height of the rectangle (top-bottom or

right-left)?
6 What is the Riemann sum approximation?

∑
height · base

=
∑

7 What is a and b (algebra finds the intersection points)?
8 Write the integral?
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8.2 Volume Steps

1 Sketch a graph of the object you want to find the volume of
2 Sketch a picture of a Riemann slice on your graph
3 What shape is it? Circle: rectangle (length·width·height) or

cylinder/disk (π · radius2·height)
4 Infinitesimal part of the slice? Circle: ∆x or ∆y
5 Sketch a diagram and show work to solve for any lengths

you need
6 Circle any we used: Pythagorean theorem or similar

triangles
7 What is the Riemann sum approximation?

∑
8 What is a and b?
9 Write the integral?
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8.2 Volume (Revolutions) and Arc Length
Volume by revolving a region about an axis
Riemann sums with 4x or 4y →

∫ b
a dx or

∫ b
a dy∑

π( 2
5 yi )

24y →
∫ 1

0 5( 2
5 y)2dy

Common forms:
∫ b

a
πr2dx and

∫ b

a
π(r2

outer − r2
inner )dx

Key is to figure out the radius (or radii) via pics
What I want you to show me... reasoning for radius, integral
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8.4 Varying Density
Calc II density over length, area or volume, changing only
in 1 dimension (Calc III for others)
Slice/move so density is approximately constant:
If δ = f (x), then slice ⊥ x
If δ = f (r), then move from center outward via concentric
circles/cylindrical shells

∫ b
a 2πrδ(r) dr

Population: quantity per unit area or volume. People per
square mile, bacteria per cc.
Substance: mass per unit volume (gm per cc)
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8.5 Work: Varying Force
Work is force × distance
Integrals apply when we vary the force, like Hook’s Law to
stretch (and hold) a spring, where F (x) = kx and
W =

∫
F (x)dx

Sometimes need to calculate the force, like when it is a
column of water:
mass = density × volume
F = mass × g
Sometimes we don’t need to multiply by g like when we
have a density that already has a force component:
weight (force) = volume ×62.4 lbs/ft3

Work = ( 62.4lb/ft3× volume of slice ) × displacement
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Slicing for Volume, Density and Work Practice Sheet

1 cylindrical disk volume
= π radius of slice2∆y

2 total cone volume:
∫ 5

0 π(2y
5 )2dy

Similar ∆: radius of slice
y = 2

5 so r = 2y
5

3 density δ(y) of the cone varies with it’s height y :
mass =

∫ 5
0 δ(y) volume =

∫ 5
0 δ(y)π(2y

5 )2dy
4 Work to pump the water out if cone filled to height of 4ft. =

F d = ( 62.5lb/ft3× volume ) × d each slice displaced

=
∫ 4

0
(62.5× (π(

2y
5

)2 × dy)× (5− y)
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9.1 Sequences

list of terms s1, s2, ...sn, ... often arranged in a fixed pattern
algebraic, numeric and graphical representations
new vocab: monotone, alternating, recursive, bounded
lim

n→∞
sn? converges or diverges?
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9.2 Series: Geometric
ratio between any two consecutive terms is constant.

sum of the first n terms:
a(1− xn)

1− x
. Careful of # terms and

starting index. lim
n→∞

a(1− xn)

1− x
=

a
1− x

if |x | < 1

Example:
∞∑

i=0

1
2

1
2

i
=
∞∑

i=1

1
2

i
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9.3 Series: Partial Sums∞∑
n=1

an and convergence? [9.3, 9.4, 9.5, chapter 10]

nth partial sum:
n∑

i=1
ai where ai may not be geometric

sequence of partial sums Sn converges⇔ series does
so examine lim

n→∞
nth partial sums

Example:
∞∑

n=1

1
n(n+1) Sn = n

n+1 lim
n→∞

Sn = 1
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9.3: Limits and Linearity for Convergence or Divergence
terms not getting smaller: lim

n→∞
an 6= 0 or DNE, then partial

sums diverge and so does the series. Example:
∞∑

n=1

5+n
2n+1

Linearity:
∞∑

n=1

an converges to S and
∞∑

n=1

bn converges to T ,

and k is any constant, then
∞∑

n=1

kan + bn converges to

kS + T .
Application 1: add two geometric series (converge)
Application 2: add divergent & convergent series (diverge)

Example:
∞∑

n=1

1
2

n
+ (−1)n. If convergent, then subtract

convergent
∞∑

n=1

1
2

n
and the result should converge.
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9.3: Integral Test Bounds
If series has terms that are decreasing and positive, the integral
test not only tells us about convergence, but also bounds the
series:

a4a3
a2

a1

a1=f(1)

a5a4
a3

a2

a1

∫ ∞
1

f (x)dx ≤
∑

an ≤ a1 +

∫ ∞
1

f (x)dx
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9.2 Geometric Series versus 9.3 p-Series
ratio between any two consecutive terms is constant.

sum of the first n terms:
a(1− xn)

1− x
. Careful of # terms and

starting index. lim
n→∞

a(1− xn)

1− x
=

a
1− x

if |x | < 1
∞∑

n=1

1
np converges if p > 1 and diverges if p ≤ 1.

∞∑
n=1

(1
2
)n

= 1
2 + 1

4 + 1
8 ... geo series, |x | = .5 < 1 conv to

.5
1− .5

∞∑
n=1

1
n2 = 1 + 1

4 + 1
9 ... p series: p = 2 > 1 conv by integral test:

terms dec +:∫∞
1

1
x2 dx = limb→∞

∫ b
1 x−2 dx = limb→∞

x−1

−1

∣∣∣∣b
1

= 0−−1

1 ≤
∑∞

n=1
1
n2 ≤ 1+ first term = 1 + 1
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1 Is this a geometric series? yes no

Geometric Series:
∞∑

i=0

ax i where x is the common ratio

and a is a constant.
n∑

i=0

ax i =
a(1− xn+1)

1− x
.

∞∑
i=0

ax i =
a

1− x
provided |x | < 1.

2 Can we apply the Terms not Getting Smaller? yes no
Terms not Getting Smaller: For

∑
an, if the lim

n−>∞
an 6= 0,

then the infinite series does not converge.
3 Are the terms decreasing and positive eventually, and if so

is this an integral we can do? yes no
Integral Test: For

∑
an, if the terms are decreasing and

an > 0, then the series behaves the same way as∫ ∞
a

andn, &
∫ ∞

a
f (x)dx ≤

∑
an ≤ 1st term +

∫ ∞
a

f (x)dx .
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Internalize Material–Make it Your Own
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