Test 2

$7.5,8.1,8.2,8.4$ (density only), 8.5 (work only), $9.1,9.2$ and 9.3 related test 1 material and material from prior classes

Local to Global Perspectives

Analyze small pieces to understand the big picture. Examples:

- numerical integration via rectangles
- area between two curves via rectangles
- volume by cylindrical disk or rectangular box slices
- total work via the work for each slice
$=$ force for each slice \times displacement of that slice
- series diverges when sequence terms do not get smaller. (when they do get smaller anything can happen)

7.5 Numerical Methods

- Approximates integrals we can't evaluate directly, including discrete data
- $n=$ number of intervals, $\triangle x=\frac{b-a}{n}$
- Left $(4)=f\left(x_{0}\right) \triangle x+f\left(x_{1}\right) \triangle x+f\left(x_{2}\right) \triangle x+f\left(x_{3}\right) \triangle x$ left endpoints
- Right(4) $\underset{\overline{(/(x)}}{ } f\left(x_{1}\right) \triangle x+f\left(x_{2}\right) \triangle x+f\left(x_{3}\right) \triangle x+f\left(x_{4}\right) \triangle x$ right points

- $\operatorname{Trap}(4)=\frac{\text { Left(4) }+\operatorname{Right}(4)}{2}$

- $\operatorname{Mid}(4)=$ $f\left(\frac{x_{0}+x_{1}}{2}\right) \triangle x+f\left(\frac{x_{1}+x_{2}}{2}\right) \triangle x+f\left(\frac{x_{2}+x_{3}}{2}\right) \triangle x+f\left(\frac{x_{3}+x_{4}}{2}\right) \triangle x$ midpoints

8.1 Area and Volume (Slice and Conquer)

- Area by slicing into rectangles with known length
- Volume by slicing into regions we know the area of
- Riemann sums with Δx or $\Delta y \rightarrow \int_{a}^{b} d x$ or $\int_{a}^{b} d y$

$$
\sum \pi\left(\frac{2}{5} y_{i}\right)^{2} \triangle y \rightarrow \int_{0}^{1} 5\left(\frac{2}{5} y\right)^{2} d y
$$

What I want you to show me... picture, slice, Riemann sum, integral

8.1 Area Steps

(1) Sketch a graph of the functions to find the enclosed region
(2) Sketch a picture of a Riemann slice on your graph.
(3) Base of the rectangle? Circle: Δx or Δy
(9) Which function is larger in that variable (top for x , right for y)?
(6) What is the height of the rectangle (top-bottom or right-left)?
(0) What is the Riemann sum approximation? \sum height • base $=\sum$
(1) What is a and b (algebra finds the intersection points)?
((Write the integral?

8.2 Volume Steps

(1) Sketch a graph of the object you want to find the volume of
(2) Sketch a picture of a Riemann slice on your graph
(3) What shape is it? Circle: rectangle (length-width•height) or cylinder/disk ($\pi \cdot$ radius 2. height)
(9) Infinitesimal part of the slice? Circle: Δx or Δy
© Sketch a diagram and show work to solve for any lengths you need
(Circle any we used: Pythagorean theorem or similar triangles
(What is the Riemann sum approximation? \sum
(What is a and b ?

- Write the integral?

8.2 Volume (Revolutions) and Arc Length

- Volume by revolving a region about an axis
- Riemann sums with Δx or $\Delta y \rightarrow \int_{a}^{b} d x$ or $\int_{a}^{b} d y$
$\sum \pi\left(\frac{2}{5} y_{i}\right)^{2} \Delta y \rightarrow \int_{0}^{1} 5\left(\frac{2}{5} y\right)^{2} d y$
- Common forms: $\int_{a}^{b} \pi r^{2} d x$ and $\int_{a}^{b} \pi\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right) d x$
- Key is to figure out the radius (or radii) via pics

What I want you to show me... reasoning for radius, integral

8.4 Varying Density

- Calc II density over length, area or volume, changing only in 1 dimension (Calc III for others)
- Slice/move so density is approximately constant: If $\delta=f(x)$, then slice $\perp x$ If $\delta=f(r)$, then move from center outward via concentric circles/cylindrical shells $\int_{a}^{b} 2 \pi r \delta(r) d r$
- Population: quantity per unit area or volume. People per square mile, bacteria per cc.
- Substance: mass per unit volume (gm per cc)

8.5 Work: Varying Force

- Work is force \times distance
- Integrals apply when we vary the force, like Hook's Law to stretch (and hold) a spring, where $F(x)=k x$ and $W=\int F(x) d x$
- Sometimes need to calculate the force, like when it is a column of water:
mass $=$ density \times volume
$\mathrm{F}=$ mass $\times g$
- Sometimes we don't need to multiply by g like when we have a density that already has a force component:
weight (force) $=$ volume $\times 62.4 \mathrm{lbs} / \mathrm{ft}^{3}$
Work $=\left(62.4 / \mathrm{l} / \mathrm{ft}^{3} \times\right.$ volume of slice $) \times$ displacement

Slicing for Volume, Density and Work Practice Sheet

 cylindrical disk volume
$=\pi$ radius of slice ${ }^{2} \Delta y$
(2) total cone volume: $\int_{0}^{5} \pi\left(\frac{2 y}{5}\right)^{2} d y$

Similar Δ : $\frac{\text { radius of slice }}{y}=\frac{2}{5}$ so $r=\frac{2 y}{5}$
(0) density $\delta(y)$ of the cone varies with it's height y : mass $=\int_{0}^{5} \delta(y)$ volume $=\int_{0}^{5} \delta(y) \pi\left(\frac{2 y}{5}\right)^{2} d y$
(9) Work to pump the water out if cone filled to height of 4 ft . $=$ $\mathrm{Fd}=\left(62.5 \mathrm{lb} / \mathrm{ft}^{3} \times\right.$ volume $) \times \mathrm{d}$ each slice displaced
$=\int_{0}^{4}\left(62.5 \times\left(\pi\left(\frac{2 y}{5}\right)^{2} \times d y\right) \times(5-y)\right.$

9.1 Sequences

- list of terms $s_{1}, s_{2}, \ldots s_{n}, \ldots$ often arranged in a fixed pattern
- algebraic, numeric and graphical representations
- new vocab: monotone, alternating, recursive, bounded
- $\lim _{n \rightarrow \infty} s_{n}$? converges or diverges?

9.2 Series: Geometric

- ratio between any two consecutive terms is constant.
sum of the first n terms: $\frac{a\left(1-x^{n}\right)}{1-x}$. Careful of \# terms and starting index. $\lim _{n \rightarrow \infty} \frac{a\left(1-x^{n}\right)}{1-x}=\frac{a}{1-x}$ if $|x|<1$
Example: $\sum_{i=0}^{\infty} \frac{1}{2} \frac{1}{2}^{i}=\sum_{i=1}^{\infty} \frac{1}{2}^{i}$

9.3 Series: Partial Sums

- $\sum_{n=1}^{\infty} a_{n}$ and convergence? [9.3, 9.4, 9.5, chapter 10]
- $n^{\text {th }}$ partial sum: $\sum_{i=1}^{n} a_{i}$ where a_{i} may not be geometric sequence of partial sums S_{n} converges \Leftrightarrow series does so examine $\lim _{n \rightarrow \infty} n^{\text {th }}$ partial sums
- Example: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ $S_{n}=\frac{n}{n+1} \quad \lim _{n \rightarrow \infty} S_{n}=1$

9.3: Limits and Linearity for Convergence or Divergence

- terms not getting smaller: $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or DNE, then partial sums diverge and so does the series. Example: $\sum_{n=1}^{\infty} \frac{5+n}{2 n+1}$
- Linearity: $\sum_{n=1}^{\infty} a_{n}$ converges to S and $\sum_{n=1}^{\infty} b_{n}$ converges to T,
and k is any constant, then $\sum_{n=1}^{\infty} k a_{n}+b_{n}$ converges to $k S+T$.
Application 1: add two geometric series (converge)
Application 2: add divergent \& convergent series (diverge)
Example: $\sum_{n=1}^{\infty} \frac{1}{2}^{n}+(-1)^{n}$. If convergent, then subtract
convergent $\sum_{n=1}^{\infty} \frac{1}{2}^{n}$ and the result should converge.

9.3: Integral Test Bounds

If series has terms that are decreasing and positive, the integral test not only tells us about convergence, but also bounds the series:

9.2 Geometric Series versus 9.3 p-Series

- ratio between any two consecutive terms is constant.
sum of the first n terms: $\frac{a\left(1-x^{n}\right)}{1-x}$. Careful of \#terms and
starting index. $\lim _{n \rightarrow \infty} \frac{a\left(1-x^{n}\right)}{1-x}=\frac{a}{1-x}$ if $|x|<1$
- $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
$\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8} \ldots$ geo series, $|x|=.5<1$ conv to $\frac{.5}{1-.5}$
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9} \ldots p$ series: $p=2>1$ conv by integral test: terms dec + :
$\int_{1}^{\infty} \frac{1}{x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} x^{-2} d x=\left.\lim _{b \rightarrow \infty} \frac{x^{-1}}{-1}\right|_{1} ^{b}=0--1$
$1 \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}} \leq 1+$ first term $=1+1$
(1) Is this a geometric series? yes no

Geometric Series: $\sum_{i=0}^{\infty} a x^{i}$ where x is the common ratio
and a is a constant. $\sum_{i=0}^{n} a x^{i}=\frac{a\left(1-x^{n+1}\right)}{1-x}$.

$$
\sum_{i=0}^{\infty} a x^{i}=\frac{a}{1-x} \text { provided }|x|<1 .
$$

(2) Can we apply the Terms not Getting Smaller? yes no Terms not Getting Smaller. For $\sum a_{n}$, if the $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the infinite series does not converge.
(3) Are the terms decreasing and positive eventually, and if so is this an integral we can do? yes no Integral Test: For $\sum a_{n}$, if the terms are decreasing and $a_{n}>0$, then the series behaves the same way as $\int_{a}^{\infty} a_{n} d n, \& \int_{a}^{\infty} f(x) d x \leq \sum a_{n} \leq 1$ st term $+\int_{a}^{\infty} f(x) d x$.

Dr. Sarah
Math 1120: Calculus and Analytic Geometry II

Internalize Material-Make it Your Own

Dont practice until you get it right.

Practice until you cant get it wrong.

