

Function/Linear Transformation Viewpointsleft multiply by A to get $A\vec{x}$ \vec{b} is the image of \vec{x} under the

transformation $T(\vec{x}) = A\vec{x}$

solve
$$A\vec{x} = \vec{b}$$
 for \vec{b}
solve $A\vec{x} = \vec{b}$ for \vec{x}

find the output \vec{b} in the span of columns of *A* find the inputs that mapped to the output \vec{b}

Review of Dot Products for Matrix Multiplication $AB = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix}$

1.8 and 1.9 Math 2240: Introduction to Linear Algebra

프 🖌 🛪 프 🛌

Invertibility or Not in Linear Transformations

https://www.math.ucdavis.edu/~linear/linear-guest.pdf

- A invertible transforms in ways that can be undone, without a loss of information
- A not invertible like $T : \mathbb{R}^3 \to \mathbb{R}^3$ via $T(\vec{x}) = A\vec{x}$ where $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ acts on } \begin{bmatrix} x \\ y \\ z \end{bmatrix}. \text{ What is } T(\vec{x})?$

Invertibility or Not in Linear Transformations

https://www.math.ucdavis.edu/~linear/linear-guest.pdf

• A invertible transforms in ways that can be undone, without a loss of information

• A not invertible like $T : \mathbb{R}^3 \to \mathbb{R}^3$ via $T(\vec{x}) = A\vec{x}$ where $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ acts on $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$. What is $T(\vec{x})$? smushes vectors, information is not recoverable

Nonsquare Linear Transformations

Let $A = \begin{bmatrix} 2 & -1 & 1 \\ 3 & 0 & -2 \end{bmatrix}$ and the linear transformation $T(\vec{x}) = A\vec{x}$.

同 ト イヨ ト イヨ ト ・ ヨ ・ の へ ()

Nonsquare Linear Transformations

Let $A = \begin{bmatrix} 2 & -1 & 1 \\ 3 & 0 & -2 \end{bmatrix}$ and the linear transformation $T(\vec{x}) = A\vec{x}$.

同 ト イヨ ト イヨ ト ヨ うくで

Nonsquare Linear Transformations

Let $A = \begin{bmatrix} 2 & -1 & 1 \\ 3 & 0 & -2 \end{bmatrix}$ and the linear transformation $T(\vec{x}) = A\vec{x}$.

Vertical Shear

Apply the transformation $T(\vec{x}) = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \vec{x}$ to the vectors $\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and $\vec{x}_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

프 🖌 🛪 프 🛌

Vertical Shear

Apply the transformation $T(\vec{x}) = \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} \vec{x}$ to the vectors $\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \text{ and } \vec{x}_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1 & 0\\2 & 1\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}1 & 0\\0\end{bmatrix} \cdot \begin{bmatrix}1\\0\\0\\2 & 1\end{bmatrix} \cdot \begin{bmatrix}1\\0\\0\end{bmatrix} = \begin{bmatrix}1 \cdot 1 + 0 \cdot 0\\2 \cdot 1 + 1 \cdot 0\end{bmatrix} = \begin{bmatrix}1\\2\end{bmatrix}$ $T\left(\begin{vmatrix} 1 \\ 1 \end{vmatrix} \right) = \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} \begin{vmatrix} 1 \\ 1 \end{vmatrix} = \begin{vmatrix} 1 \\ 3 \end{vmatrix}$ $T\left(\begin{bmatrix} 0\\1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0\\2 & 1 \end{bmatrix} \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix}$ Plot the vectors in 1 graph and their images in another. How could we describe T?

1.8 and 1.9 Math 2240: Introduction to Linear Algebra

k < 0 k > 0Image from *Linear Algebra and Its Applications* by David Lay, Steven Lay, and Judi McDonald

Images created using VLA Package from Visual Linear Algebra by Gene Herman and Michael Pepe

input-output diagram

프 에 에 프 어 - -

Projection onto y = x

Apply the transformation $T(\vec{x}) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \vec{x}$ to $\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and $\vec{x}_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and plot the outputs on 1 graph

通 と く ヨ と く ヨ と …

Projection onto y = x

Apply the transformation $T(\vec{x}) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \vec{x}$ to $\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and $\vec{x}_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and plot the outputs on 1 graph

э.

Projection $T(\vec{x}) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \vec{x}$ onto y = xIs $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ in the range of this transformation?

1.8 and 1.9 Math 2240: Introduction to Linear Algebra

直 とくほ とくほ とうほう

Projection

input-output diagram in \mathbb{R}^2 input-output diagram in \mathbb{R}^3

What Makes these Transformations Linear?

A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is *linear* if 1. $T(\vec{x}_1 + \vec{x}_2) = T(\vec{x}_1) + T(\vec{x}_2)$ for all \vec{x}_1, \vec{x}_2 in \mathbb{R}^n 2. $T(c\vec{x}) = cT(\vec{x})$ for all scalars *c* and all \vec{x} in \mathbb{R}^n

Consequences of Linear Transformations $\mathbb{R}^n \to \mathbb{R}^m$

- a) There exists a unique matrix representation $A_{m \times n}$
- b) $T(c_1\vec{v}_1+c_2\vec{v}_2+\cdots+c_n\vec{v}_n)=c_1T(\vec{v}_1)+c_2T(\vec{v}_2)+\cdots+c_nT(\vec{v}_n)$

c)
$$T(\vec{0}) = T(0\vec{0}) = 0T(\vec{0}) = \vec{0}$$

d) If we know where the unit *x*-axis and unit *y*-axis map to, we know the matrix of the linear transformation. $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} =$

* 国家 * 国家

Consequences of Linear Transformations $\mathbb{R}^n \to \mathbb{R}^m$

- a) There exists a unique matrix representation $A_{m \times n}$
- b) $T(c_1\vec{v}_1+c_2\vec{v}_2+\cdots+c_n\vec{v}_n)=c_1T(\vec{v}_1)+c_2T(\vec{v}_2)+\cdots+c_nT(\vec{v}_n)$

c)
$$T(\vec{0}) = T(0\vec{0}) = 0T(\vec{0}) = \vec{0}$$

d) If we know where the unit *x*-axis and unit *y*-axis map to, we know the matrix of the linear transformation. $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ c \end{bmatrix} \qquad \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} b \\ d \end{bmatrix}$

$$d \mid [0] \mid [c] \mid [c \mid d] \mid [1] \mid [d]$$

 $T\left(\begin{vmatrix} 1\\0 \end{vmatrix} \right) = 1$ st column of matrix representation

 $T\left(\begin{vmatrix} 0 \\ 1 \end{vmatrix} \right) = 2$ nd column of matrix representation

Reflection across x-axis

1.8 and 1.9 Math 2240: Introduction to Linear Algebra

Rotation by $\frac{\pi}{4}$ about $\vec{0}$

(日)((日))

э

Rotation counterclockwise by θ about $\vec{0}$ The standard matrix for $T : \mathbb{R}^2 \to \mathbb{R}^2$ that rotates a vector through an angle of θ in the counter-clockwise direction is

Some Transformations of \mathbb{R}^2

Dilation:
$$\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$
Mixed Dilation: $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ Horizontal Shear: $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ Vertical Shear: $\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$ Projection Matrix: $\begin{bmatrix} \cos(\theta)^2 & \cos(\theta)\sin(\theta) \\ \cos(\theta)\sin(\theta) & \sin(\theta)^2 \end{bmatrix}$ Reflection Matrix: $\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix}$ Rotation Matrix: $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$

1.8 and 1.9

Math 2240: Introduction to Linear Algebra

1.8 and 1.9 Math 2240: Introduction to Linear Algebra