2.1 Handwrite Practice

Handwrite your responses to 1. and 2. below and collate them into a PDF for submission into ASULearn.

1. Let
$$A = \begin{bmatrix} -1 & 3 \\ 2 & 4 \\ 5 & -3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & -2 \\ -2 & 3 \end{bmatrix}$

-

- a) Compute AB by A times each column of B and then the linear combinations of the columns of A for each of those products and show work.
- b) Compute AB by the row-column multiplications directly (dot products) and show work.

- 2. Suppose that $CA = I_{n \times n}$.
 - a) Show that the columns of A are linearly independent by showing that the equation $A\vec{x} = \vec{0}$ has only the trivial solution by multiplying by C on the left of each side of the equation $A\vec{x} = \vec{0}$. Next apply properties of matrix multiplication to reduce and show we have only the trivial solution. Show the properties and name them.
 - b) Use part a) to explain why A cannot have more columns than rows.
 - c) Show that $C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ satisfy the condition $CA = I_{n \times n}$, i.e. that they don't

need to be square matrices.