2.1 Handwrite Practice

Handwrite your responses to 1 . and 2. below and collate them into a PDF for submission into ASULearn.

1. Let $A=\left[\begin{array}{cc}-1 & 3 \\ 2 & 4 \\ 5 & -3\end{array}\right]$ and $B=\left[\begin{array}{cc}4 & -2 \\ -2 & 3\end{array}\right]$
a) Compute $A B$ by A times each column of B and then the linear combinations of the columns of A for each of those products and show work.
b) Compute $A B$ by the row-column multiplications directly (dot products) and show work.
2. Suppose that $C A=I_{n \times n}$.
a) Show that the columns of A are linearly independent by showing that the equation $A \vec{x}=\overrightarrow{0}$ has only the trivial solution by multiplying by C on the left of each side of the equation $A \vec{x}=\overrightarrow{0}$. Next apply properties of matrix multiplication to reduce and show we have only the trivial solution. Show the properties and name them.
b) Use part a) to explain why A cannot have more columns than rows.
c) Show that $C=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ and $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$ satisfy the condition $C A=I_{n \times n}$, i.e. that they don't need to be square matrices.
