Multiplication of Matrices in 2.1 (Extension of 1.4)
Columns of B Method: $A B=\left[\begin{array}{lll}A \cdot c o l 1 B & \ldots & A \cdot c o l n B\end{array}\right]$

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ccc}
5 & 6 & 7 \\
8 & 9 & 10
\end{array}\right]} & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
5 \\
8
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
6 \\
9
\end{array}\right]
\end{array}\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{c}
7 \\
10
\end{array}\right]\right]\right]\left[\begin{array}{lll}
1 \cdot 5+2 \cdot 8 & 1 \cdot 6+2 \cdot 9 & 1 \cdot 7+2 \cdot 10 \\
3 \cdot 5+4 \cdot 8 & 3 \cdot 6+4 \cdot 9 & 3 \cdot 7+4 \cdot 10
\end{array}\right]
$$

Dot Product Method: $A B_{i j}=\sum_{k=1}^{m} A_{i k} B_{k j}=[$ rowi $A] \cdot[\operatorname{columnj} B]$

$$
\left.\left[\begin{array}{ll}
{\left[\begin{array}{ll}
1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
5 \\
8
\end{array}\right]} & {\left[\begin{array}{ll}
1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
6 \\
9
\end{array}\right]}
\end{array} \begin{array}{ll}
1 & 2
\end{array}\right] \cdot\left[\begin{array}{c}
7 \\
10
\end{array}\right]\right]
$$

2.2 Algebra: Division of Matrices? [Inverse]

 Steps to solve $3 x=5 \rightarrow x=\frac{5}{3}$?
2.2 Algebra: Division of Matrices? [Inverse]

Steps to solve $3 x=5 \rightarrow x=\frac{5}{3}$?
Steps to solve $A \vec{x}=\vec{b}$

2.2 Algebra: Division of Matrices? [Inverse]

Steps to solve $3 x=5 \rightarrow x=\frac{5}{3}$?
Steps to solve $A \vec{x}=\vec{b}[A \mid \vec{b}]$ reduce to Gaussian to see 0 [0 ...nonzero], 1 [full column pivots for variables] or ∞ sols [consistent but missing pivot] .

2.2 Algebra: Division of Matrices? [Inverse]

Steps to solve $3 x=5 \rightarrow x=\frac{5}{3}$?
Steps to solve $A \vec{x}=\vec{b}[A \mid \vec{b}]$ reduce to Gaussian to see 0 [0 . . . nonzero], 1 [full column pivots for variables] or ∞ sols [consistent but missing pivot] .

OR if A has an inverse A^{-1} then mult both sides of $A \vec{x}=\vec{b}$ by the inverse:
Multiply both sides: $A^{-1}(A \vec{x})=A^{-1} \vec{b}$

2.2 Algebra: Division of Matrices? [Inverse]

Steps to solve $3 x=5 \rightarrow x=\frac{5}{3}$?
Steps to solve $A \vec{x}=\vec{b}[A \mid \vec{b}]$ reduce to Gaussian to see 0 [0 . . . nonzero], 1 [full column pivots for variables] or ∞ sols [consistent but missing pivot] .

OR if A has an inverse A^{-1} then mult both sides of $A \vec{x}=\vec{b}$ by the inverse:
Multiply both sides: $A^{-1}(A \vec{x})=A^{-1} \vec{b}$
Reorder by associativity: $\left(A^{-1} A\right) \vec{x}=A^{-1} \vec{b}$

2.2 Algebra: Division of Matrices? [Inverse]

Steps to solve $3 x=5 \rightarrow x=\frac{5}{3}$?
Steps to solve $A \vec{x}=\vec{b}[A \mid \vec{b}]$ reduce to Gaussian to see 0 [0 . . . nonzero], 1 [full column pivots for variables] or ∞ sols [consistent but missing pivot] .

OR if A has an inverse A^{-1} then mult both sides of $A \vec{x}=\vec{b}$ by the inverse:
Multiply both sides: $A^{-1}(A \vec{x})=A^{-1} \vec{b}$
Reorder by associativity: $\left(A^{-1} A\right) \vec{x}=A^{-1} \vec{b}$
Cancel A by its inverse: $I_{n \times n} \vec{X}=A^{-1} \vec{b}$

2.2 Algebra: Division of Matrices? [Inverse]

Steps to solve $3 x=5 \rightarrow x=\frac{5}{3}$?
Steps to solve $A \vec{x}=\vec{b}[A \mid \vec{b}]$ reduce to Gaussian to see 0 [0 . . . nonzero], 1 [full column pivots for variables] or ∞ sols [consistent but missing pivot] .

OR if A has an inverse A^{-1} then mult both sides of $A \vec{x}=\vec{b}$ by the inverse:
Multiply both sides: $A^{-1}(A \vec{x})=A^{-1} \vec{b}$
Reorder by associativity: $\left(A^{-1} A\right) \vec{x}=A^{-1} \vec{b}$
Cancel A by its inverse: $I_{n \times n} \vec{x}=A^{-1} \vec{b}$
Reduce identity: $\vec{x}=A^{-1} \vec{b}$

2.2 Algebra: Division of Matrices? [Inverse]

Steps to solve $3 x=5 \rightarrow x=\frac{5}{3}$?
Steps to solve $A \vec{x}=\vec{b}[A \mid \vec{b}]$ reduce to Gaussian to see
0 [0 . . . nonzero], 1 [full column pivots for variables] or ∞ sols [consistent but missing pivot] .

OR if A has an inverse A^{-1} then mult both sides of $A \vec{x}=\vec{b}$ by the inverse:
Multiply both sides: $A^{-1}(A \vec{x})=A^{-1} \vec{b}$
Reorder by associativity: $\left(A^{-1} A\right) \vec{x}=A^{-1} \vec{b}$
Cancel A by its inverse: $I_{n \times n} \vec{x}=A^{-1} \vec{b}$
Reduce identity: $\vec{x}=A^{-1} \vec{b}$
If A^{-1} exists then $A \vec{x}=\vec{b}$ has this unique solution for each \vec{b} and $[A \mid \vec{b}] \rightarrow\left[I_{n \times n} \mid A^{-1} \vec{b}\right]$

Solving $A \vec{x}=\vec{b}$

Reduce $[A \mid \vec{b}]$ (0,1 or ∞ sols) always works to solve $A \vec{x}=\vec{b}$.
If A is invertible, there is 1 sol: $\vec{x}=A^{-1} \vec{b}\left[A \rightarrow I_{n \times n}\right.$ so full pivots], so, (especially if we'll repeat for the same A but different b), \vec{x} is multiplication of A^{-1} by \vec{b} :

$$
\begin{aligned}
& \begin{array}{l}
x-y=-11 \\
2 x-y=3
\end{array} \quad\left[\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-11 \\
3
\end{array}\right] \\
& A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{ll}
-1 & 1 \\
-2 & 1
\end{array}\right] \text { so } \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
-1 & 1 \\
-2 & 1
\end{array}\right] \vec{b}=\left[\begin{array}{ll}
-1 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{c}
-11 \\
3
\end{array}\right]=\ldots}
\end{aligned}
$$

(favored 1.4 method)

Use linear algebra to find the identity of superman.

http://spikedmath.com/042.html

Finding the Inverse

If A is invertible then $A \rightarrow I_{n \times n}$ and the same row operations that turn A to $I_{n \times n}$ turn $I_{n \times n}$ to A^{-1}.

$$
\left.\begin{array}{rl}
{\left[A|\mid]=\left[\begin{array}{llll}
a & b & 1 & 0 \\
c & d & 0 & 1
\end{array}\right] \xrightarrow{r_{2}^{\prime}=-\frac{c}{a} r_{1}+r_{2}}\left[\begin{array}{cccc}
a & b & 1 & 0 \\
0 & -\frac{b c}{a}+d & -\frac{c}{a} & 1
\end{array}\right]\right.} \\
& \xrightarrow{r_{2}^{\prime}=\frac{a}{a d-b c} r_{2}}\left[\left.\begin{array}{cccc}
a & b & 1 & 0 \\
0 & 1
\end{array} \right\rvert\,-\frac{c}{a d-b c}\right. \\
\frac{a}{a d-b c}
\end{array}\right],
$$

so $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

Sherlock Holmes: Elementary my dear Watson

Finding the Inverse Via Elementary Row Operations

If A is invertible then $A \rightarrow I_{n \times n}$ and the same row operations that turn A to $I_{n \times n}$ turn $I_{n \times n}$ to A^{-1}

Finding the Inverse Via Elementary Row Operations

If A is invertible then $A \rightarrow I_{n \times n}$ and the same row operations that turn A to $I_{n \times n}$ turn $I_{n \times n}$ to A^{-1}
Row operations can be written as matrix multiplications:
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$

Finding the Inverse Via Elementary Row Operations

If A is invertible then $A \rightarrow I_{n \times n}$ and the same row operations that turn A to $I_{n \times n}$ turn $I_{n \times n}$ to A^{-1}
Row operations can be written as matrix multiplications:
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] r_{3}^{\prime}=-4 r_{1}+r_{3}$
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$

Finding the Inverse Via Elementary Row Operations

If A is invertible then $A \rightarrow I_{n \times n}$ and the same row operations that turn A to $I_{n \times n}$ turn $I_{n \times n}$ to A^{-1}
Row operations can be written as matrix multiplications:
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] r_{3}^{\prime}=-4 r_{1}+r_{3}$
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] r_{2}^{\prime}=-5 r_{2}$
$\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$

Finding the Inverse Via Elementary Row Operations

If A is invertible then $A \rightarrow I_{n \times n}$ and the same row operations that turn A to $I_{n \times n}$ turn $I_{n \times n}$ to A^{-1}
Row operations can be written as matrix multiplications:
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] r_{3}^{\prime}=-4 r_{1}+r_{3}$
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] r_{2}^{\prime}=-5 r_{2}$
$\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] r_{1}$ swap r_{2}
Keep track of row operations that turn A to $I_{n \times n}$

Finding the Inverse Via Elementary Row Operations

If A is invertible then $A \rightarrow I_{n \times n}$ and the same row operations that turn A to $I_{n \times n}$ turn $I_{n \times n}$ to A^{-1}
Row operations can be written as matrix multiplications:
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] r_{3}^{\prime}=-4 r_{1}+r_{3}$
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] r_{2}^{\prime}=-5 r_{2}$
$\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] r_{1}$ swap r_{2}
Keep track of row operations that turn A to $I_{n \times n}$
$E_{p} \ldots E_{2} E_{1} A=I$ so $A^{-1}=E_{p} \ldots E_{2} E_{1}$

