Applying Multiplication and the Inverse

Suppose the last column of $A B$ is entirely zeros but B itself has no column of zeros. What can be said about the columns of A ?

Applying Multiplication and the Inverse

Suppose the last column of $A B$ is entirely zeros but B itself has no column of zeros. What can be said about the columns of A ? $A B=\left[\begin{array}{lll}A \cdot \operatorname{col} 1 B & \ldots & A . c o l n B\end{array}\right]=\left[\begin{array}{lll}A \cdot \operatorname{col} 1 B & \ldots & \overrightarrow{0}\end{array}\right]$ so
A.coln $B=\overrightarrow{0}$. Now $A \vec{x}=\overrightarrow{0}$ has a nontrivial solution $\vec{x}=\operatorname{col} n B$, so the the columns of A are not l.i.

Applying Multiplication and the Inverse

Suppose the last column of $A B$ is entirely zeros but B itself has no column of zeros. What can be said about the columns of A ? $A B=\left[\begin{array}{lll}A \cdot \operatorname{col} 1 B & \ldots & A \cdot \operatorname{coln} B\end{array}\right]=\left[\begin{array}{lll}A \cdot \operatorname{col} 1 B & \ldots & \overrightarrow{0}\end{array}\right]$ so A.coln $B=\overrightarrow{0}$. Now $A \vec{x}=\overrightarrow{0}$ has a nontrivial solution $\vec{x}=\operatorname{coln} B$, so the the columns of A are not I.i.

As a review, via the linear combination def of mult of A with a column vector: $b_{1 n}$ col1 $A+\ldots+b_{n n} \operatorname{coln} A=\overrightarrow{0}$. We have at least one non-zero b_{-n} since B has no col of 0 s (i.e. a non-trivial weight for $A \vec{x}=\overrightarrow{0}$), so the columns of A are not I.i

Applying the inverse (if it exists)—2 Common Methods

Multiply both sides: $A^{-1}(A \vec{x})=A^{-1} \vec{b}$
Reorder by associativity: $\left(A^{-1} A\right) \vec{x}=A^{-1} \vec{b}$
Cancel A by its inverse: $I_{n \times n} \vec{x}=A^{-1} \vec{b}$
Reduce identity: $\vec{x}=A^{-1} \vec{b}$
OR
$A_{n \times n}$ must have full pivots to be invertible because it reduces to the identity matrix I so you can make use of the full pivots

