## Determinants

$\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right| \xrightarrow{\text { Method 1: First } 2 \text { columns/6 diagonals }} \begin{array}{lllll}a & b & c & a & b \\ d & e & f & d & e \\ g & h & i & g & h\end{array}$

## Determinants

$\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right| \xrightarrow{\text { Method 1: First } 2 \text { columns/6 diagonals }} \begin{array}{lllll}a & b & c & a & b \\ d & e & f & d & e \\ g & h & i & g & h\end{array}$
3 main diagonals: $a \cdot e \cdot i+b \cdot f \cdot g+c \cdot d \cdot h$ minus 3 off diagonals: $-c \cdot e \cdot g-a \cdot f \cdot h-b \cdot d \cdot i$
$2 \times 2$ has 2 terms, $3 \times 3$ has 6 terms, $4 \times 4$ has 24 terms. Do you see a pattern?

## Determinants

| $a$ | $b$ | $c$ |
| :--- | :--- | :--- |
| $d$ | $e$ | $f$ |
| $g$ | $h$ | $i$ | \left\lvert\,$\xrightarrow{\text { Method 1: First } 2 \text { columns/6 diagonals }}$| $a$ | $b$ | $c$ | $a$ | $b$ |
| :--- | :--- | :--- | :--- | :--- |
| $d$ | $e$ | $f$ | $d$ | $e$ |
| $g$ | $h$ | $i$ | $g$ | $h$ |\right.

3 main diagonals: $a \cdot e \cdot i+b \cdot f \cdot g+c \cdot d \cdot h$ minus 3 off diagonals: $-c \cdot e \cdot g-a \cdot f \cdot h-b \cdot d \cdot i$
$2 \times 2$ has 2 terms, $3 \times 3$ has 6 terms, $4 \times 4$ has 24 terms. Do you see a pattern?

\[

\]

where we have fixed $i$ or $j$ as the row or column we are expanding along. For example:
$\sum_{1}^{n} a_{2 j} \cdot(-1)^{2+j}$. Det of matrix obtained by eliminating row 2 and column $j$
$=a_{21} \cdot(-1)^{2+1}\left|\begin{array}{cc}b & c \\ h & i\end{array}\right|+a_{22} \cdot(-1)^{2+2}\left|\begin{array}{cc}a & c \\ g & i\end{array}\right|+a_{23} \cdot(-1)^{2+3}\left|\begin{array}{ll}a & b \\ g & h\end{array}\right|$
$\left.=d \cdot(-1)^{2+1}\left|\begin{array}{ll}b & c \\ h & i\end{array}\right|+e \cdot(-1)^{2+2}\left|\begin{array}{ll}a & c \\ g & i\end{array}\right|+f \cdot(-1)^{2+3} \right\rvert\, \begin{array}{ll}a & b \\ g & h\end{array}$

