## EBG \# 3 Using Gaussian Elimination (Echelon Form)

 Gaussian Elimination: 0s below the main diagonalAugmented matrix: $\left.\begin{array}{ccc}x & y & = \\ 1 & 1 & 17 \\ 4 & 2 & 48\end{array}\right]$
(Replacement) Replace a row by the sum of itself and a multiple of another row:

## EBG \# 3 Using Gaussian Elimination (Echelon Form)

 Gaussian Elimination: 0s below the main diagonalAugmented matrix: $\left.\begin{array}{ccc}x & y & = \\ 1 & 1 & 17 \\ 4 & 2 & 48\end{array}\right]$
(Replacement) Replace a row by the sum of itself and a multiple of another row: adding -4.row 1 to row $2\left(r_{2}^{\prime}=-4 r_{1}+r_{2}\right)$

## EBG \# 3 Using Gaussian Elimination (Echelon Form)

 Gaussian Elimination: Os below the main diagonalAugmented matrix: $\left.\begin{array}{ccc}x & y & = \\ 1 & 1 & 17 \\ 4 & 2 & 48\end{array}\right]$
(Replacement) Replace a row by the sum of itself and a multiple of another row: adding -4 row 1 to row $2\left(r_{2}^{\prime}=-4 r_{1}+r_{2}\right)$ $\left[\begin{array}{ccc}1 & 1 & 17 \\ -4 \cdot 1+4 & -4 \cdot 1+2 & -4 \cdot 17+48\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 17 \\ 0 & -2 & -20\end{array}\right]$

- $[00$ nonzero $](0 x+0 y=$ nonzero $)$ inconsistent, 0 concurrent sols.


## EBG \# 3 Using Gaussian Elimination (Echelon Form)

 Gaussian Elimination: Os below the main diagonalAugmented matrix: $\left.\begin{array}{ccc}x & y & = \\ 1 & 1 & 17 \\ 4 & 2 & 48\end{array}\right]$
(Replacement) Replace a row by the sum of itself and a multiple of another row: adding -4 row 1 to row $2\left(r_{2}^{\prime}=-4 r_{1}+r_{2}\right)$ $\left[\begin{array}{ccc}1 & 1 & 17 \\ -4 \cdot 1+4 & -4 \cdot 1+2 & -4 \cdot 17+48\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 17 \\ 0 & -2 & -20\end{array}\right]$

- $[00$ nonzero $](0 x+0 y=n o n z e r o)$ inconsistent, 0 concurrent sols.
- If consistent, use pivots = 1st nonzero entry in a row.


## EBG \# 3 Using Gaussian Elimination (Echelon Form)

 Gaussian Elimination: Os below the main diagonal$x \quad y=$ Augmented matrix: $\left[\begin{array}{lll}1 & 1 & 17 \\ 4 & 2 & 48\end{array}\right]$
(Replacement) Replace a row by the sum of itself and a multiple of another row: adding -4.row 1 to row $2\left(r_{2}^{\prime}=-4 r_{1}+r_{2}\right)$ $\left[\begin{array}{ccc}1 & 1 & 17 \\ -4 \cdot 1+4 & -4 \cdot 1+2 & -4 \cdot 17+48\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 17 \\ 0 & -2 & -20\end{array}\right]$

- $[00$ nonzero $](0 x+0 y=$ nonzero $)$ inconsistent, 0 concurrent sols.
- If consistent, use pivots = 1 st nonzero entry in a row. 1 is a pivot for $x,-2$ is a pivot for y . Any variables without pivots are free. Full pivots here-row 2 : $y=10$ and we can use back substitution (row 1: $x+y=17$, so $x=17-y=17-10=7$ ), so $(7,10)$ is unique solution (point in $\mathbb{R}^{2}$-intersection of lines)


## Elementary Row Operations

- (Interchange) Swap two equations
- (Scaling) Multiply an equation by a non-zero constant
- (Replacement) Replace one row by the sum of itself and a multiple of another row [like $r_{2}^{\prime}=-3 r_{1}+r_{2}$ ]


## Elementary Row Operations

- (Interchange) Swap two equations
- (Scaling) Multiply an equation by a non-zero constant
- (Replacement) Replace one row by the sum of itself and a multiple of another row [like $r_{2}^{\prime}=-3 r_{1}+r_{2}$ ]
Gaussian Elimination (Echelon Form): Os below the diagonal
- Save the $x$ term in eq 1 and use it to eliminate all the other $x$ terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$
- Ignore eq 1 and use the $y$ term in eq 2 to eliminate all the $y$ terms below it.
- ... Os below the diagonal (interchange as needed)


## Elementary Row Operations

- (Interchange) Swap two equations
- (Scaling) Multiply an equation by a non-zero constant
- (Replacement) Replace one row by the sum of itself and a multiple of another row [like $r_{2}^{\prime}=-3 r_{1}+r_{2}$ ]
Gaussian Elimination (Echelon Form): Os below the diagonal
- Save the $x$ term in eq 1 and use it to eliminate all the other $x$ terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$
- Ignore eq 1 and use the $y$ term in eq 2 to eliminate all the $y$ terms below it.
- ... Os below the diagonal (interchange as needed)

Critical Analysis-Solutions

- 000 . . 0 nonzero] inconsistent.
- If the system is consistent then the last row with non-zero coefficients will yield $x_{k}=b$, and then solve using back substitution (any variables without pivots are free).


## EBG \# 5

$x+k y=0$
$k x+y=0$
Reduce the augmented matrix to obtain 0s below diagonal:

## EBG \# 5

$x+k y=0$
$k x+y=0$
Reduce the augmented matrix to obtain 0s below diagonal:
Use $x$ term in eq1 to eliminate terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$ $\left[\begin{array}{lll}1 & k & 0 \\ k & 1 & 0\end{array}\right] \xrightarrow{?}$

## EBG \# 5

$x+k y=0$
$k x+y=0$
Reduce the augmented matrix to obtain 0s below diagonal:
Use $x$ term in eq1 to eliminate terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$
$\left[\begin{array}{lll}1 & k & 0 \\ k & 1 & 0\end{array}\right] \xrightarrow{?} \xrightarrow{r_{3}^{\prime}=-k r_{1}+r_{3}}\left[\begin{array}{lll}1 & k & 0 \\ ? & ? & ?\end{array}\right]=$

## EBG \# 5

$x+k y=0$
$k x+y=0$
Reduce the augmented matrix to obtain 0s below diagonal:
Use $x$ term in eq1 to eliminate terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$ $\left[\begin{array}{lll}1 & k & 0 \\ k & 1 & 0\end{array}\right] \xrightarrow{?} \xrightarrow{r_{3}^{\prime}=-k r_{1}+r_{3}}\left[\begin{array}{lll}1 & k & 0 \\ ? & ? & ?\end{array}\right]=\left[\begin{array}{ccc}1 & k & 0 \\ 0 & -k^{2}+1 & 0\end{array}\right]$ Gaussian

## EBG \# 5

$x+k y=0$
$k x+y=0$
Reduce the augmented matrix to obtain 0s below diagonal:
Use $x$ term in eq1 to eliminate terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$ $\left[\begin{array}{lll}1 & k & 0 \\ k & 1 & 0\end{array}\right] \xrightarrow{?} \xrightarrow{r_{3}^{\prime}=-k r_{1}+r_{3}}\left[\begin{array}{lll}1 & k & 0 \\ ? & ? & ?\end{array}\right]=\left[\begin{array}{ccc}1 & k & 0 \\ 0 & -k^{2}+1 & 0\end{array}\right]$ Gaussian Any rows [0 $00 \ldots 0$ nonzero]? (inconsistent)?

## EBG \# 5

$x+k y=0$
$k x+y=0$
Reduce the augmented matrix to obtain 0s below diagonal:
Use $x$ term in eq1 to eliminate terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$ $\left[\begin{array}{lll}1 & k & 0 \\ k & 1 & 0\end{array}\right] \xrightarrow{?} \xrightarrow{r_{3}^{\prime}=-k r_{1}+r_{3}}\left[\begin{array}{lll}1 & k & 0 \\ ? & ? & ?\end{array}\right]=\left[\begin{array}{ccc}1 & k & 0 \\ 0 & -k^{2}+1 & 0\end{array}\right]$ Gaussian Any rows [0 $00 \ldots 0$ nonzero]? (inconsistent)? Not here. The system is consistent so the last row with non-zero coefficients will yield $x_{k}=b$ (variables missing pivots are free).

## EBG \# 5

$x+k y=0$
$k x+y=0$
Reduce the augmented matrix to obtain 0s below diagonal:
Use $x$ term in eq1 to eliminate terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$
$\left[\begin{array}{lll}1 & k & 0 \\ k & 1 & 0\end{array}\right] \xrightarrow{?} \xrightarrow{r_{3}^{\prime}=-k r_{1}+r_{3}}\left[\begin{array}{lll}1 & k & 0 \\ ? & ? & ?\end{array}\right]=\left[\begin{array}{ccc}1 & k & 0 \\ 0 & -k^{2}+1 & 0\end{array}\right]$ Gaussian Any rows [0 $00 \ldots 0$ nonzero]? (inconsistent)? Not here.
The system is consistent so the last row with non-zero coefficients will yield $x_{k}=b$ (variables missing pivots are free).
Case 1: $-k^{2}+1=0: k= \pm 1$ and row 2 [0 000 . $y$ missing a pivot so free $(y=t)$ so $\infty$ solutions. Row 1: $x+k y=0$.

## EBG \# 5

$x+k y=0$
$k x+y=0$
Reduce the augmented matrix to obtain 0s below diagonal:
Use $x$ term in eq1 to eliminate terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$
$\left[\begin{array}{lll}1 & k & 0 \\ k & 1 & 0\end{array}\right] \xrightarrow{?} \xrightarrow{r_{3}^{\prime}=-k r_{1}+r_{3}}\left[\begin{array}{lll}1 & k & 0 \\ ? & ? & ?\end{array}\right]=\left[\begin{array}{ccc}1 & k & 0 \\ 0 & -k^{2}+1 & 0\end{array}\right]$ Gaussian Any rows [0 $00 \ldots 0$ nonzero]? (inconsistent)? Not here.
The system is consistent so the last row with non-zero coefficients will yield $x_{k}=b$ (variables missing pivots are free).
Case 1: $-k^{2}+1=0: k= \pm 1$ and row 2 [0 000 ]. $y$ missing a pivot so free $(y=t)$ so $\infty$ solutions. Row 1: $x+k y=0$. Solutions: $k=1 \quad(-t, t)[y=-x$ line] $\quad k=-1 \quad(t, t)[y=x$ line $]$

## EBG \# 5

$x+k y=0$
$k x+y=0$
Reduce the augmented matrix to obtain 0s below diagonal:
Use $x$ term in eq1 to eliminate terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$
$\left[\begin{array}{lll}1 & k & 0 \\ k & 1 & 0\end{array}\right] \xrightarrow{?} \xrightarrow{r_{3}^{\prime}=-k r_{1}+r_{3}}\left[\begin{array}{lll}1 & k & 0 \\ ? & ? & ?\end{array}\right]=\left[\begin{array}{ccc}1 & k & 0 \\ 0 & -k^{2}+1 & 0\end{array}\right]$ Gaussian Any rows [0 $00 \ldots 0$ nonzero]? (inconsistent)? Not here.
The system is consistent so the last row with non-zero coefficients will yield $x_{k}=b$ (variables missing pivots are free).
Case 1: $-k^{2}+1=0: k= \pm 1$ and row 2 [0 000 . $y$ missing a pivot so free $(y=t)$ so $\infty$ solutions. Row 1: $x+k y=0$. Solutions: $k=1 \quad(-t, t)$ [ $y=-x$ line] $\quad k=-1 \quad(t, t)[y=x$ line] Case 2: $-k^{2}+1=$ nonzero: full pivots. row 2 : nonzeroy $=0$ so $y=0$. row $1 x+k y=0$ so $x=0$. Solution: $(0,0)$

