span whole space? If not, what? I.i.? If not, what's redundant?

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]} \\
{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]}
\end{gathered}
$$

Evelyn Boyd Granville
Image 1 Credit: http://www.visionaryproject.org/granvilleevelyn/ Image 2 Credit: Marge Murray. Courtesy of Evelyn Boyd Granville
...this was the most interesting job of my lifetime-to be a member of a group responsible for writing computer programs to track the paths of vehicles in space
Reduce and write sols in vector parametrization form (for any k that give consistency) and discuss the geometry
$\left[\begin{array}{lll}1 & k & 0 \\ k & 1 & 0\end{array}\right] \xrightarrow{r_{2}^{\prime}=? r_{1}+r_{2}}\left[\begin{array}{lll}1 & k & 0 \\ ? & ? & ?\end{array}\right]=$

Evelyn Boyd Granville

Image 1 Credit: http://www.visionaryproject.org/granvilleevelyn/ Image 2 Credit: Marge Murray. Courtesy of Evelyn Boyd Granville
...this was the most interesting job of my lifetime-to be a member of a group responsible for writing computer programs to track the paths of vehicles in space

Reduce and write sols in vector parametrization form (for any k that give consistency) and discuss the geometry
$\left[\begin{array}{lll}1 & k & 0 \\ k & 1 & 0\end{array}\right] \xrightarrow{r_{2}^{\prime}=? r_{1}+r_{2}}\left[\begin{array}{lll}1 & k & 0 \\ ? & ? & ?\end{array}\right]=\left[\begin{array}{ccc}1 & k & 0 \\ 0 & -k^{2}+1 & 0\end{array}\right]$
If $-k^{2}+1$ is nonzero then $\vec{x}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
If $-k^{2}+1=0$ then $k= \pm 1$ and ∞ solutions.
When $\mathrm{k}=1$ we have $\vec{x}=t\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. When $\mathrm{k}=-1$ we have $\vec{x}=t\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

- Gaussian, Gauss-Jordan/ReducedRowEchelonForm, pivots
- alg \& geom of sols of eqs; augmented matrix rows intersecting in 0 [no concurrent], 1 [point], or $\infty\left[x_{2} \vec{v}_{1}+\vec{v}_{2}\right.$ line parallel to \vec{v}_{1} thru tip \vec{v}_{2}, plane, hyperplane...]
- homogeneous system always consistent, so 1 or ∞ sols, underdetermined system 0 or ∞ sols
1.3, 1.4 and 1.7
- alg \& geom of vectors; columns of matrix: diagonal of parallelogram, scaling along vector, on the same line or plane and the parametrized equations and geom of those
- linear combinations and weights; mixing problems
- span, l.i.

