1. Define $T(\vec{v})=A \vec{v}$, where A is $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Then $T(\vec{v})$
a) reflects \vec{v} about the y-axis
b) reflects \vec{v} about the x-axis
c) rotates \vec{V} clockwise $\frac{\pi}{2}$ radians about the origin
d) rotates \vec{V} counterclockwise $\frac{\pi}{2}$ radians about the origin
e) none of the above

Math isn't important for programming and other hilarious jokes you can tell yourself
2. Define $T(\vec{v})=A \vec{v}$, where A is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Then $T(\vec{v})$
a) reflects \vec{v} about the y-axis
b) reflects \vec{v} about the x-axis
c) rotates \vec{V} clockwise $\frac{\pi}{2}$ radians about the origin
d) rotates \vec{V} counterclockwise $\frac{\pi}{2}$ radians about the origin
e) none of the above

Before and after linear stretch

[^0]3. Define $T(\vec{v})=A \vec{v}$, where A is $\left[\begin{array}{rr}.5 & .5 \\ .5 & .5\end{array}\right]$. Then the range of T, the set of outputs of the linear transformation, is
a) \mathbb{R}^{2} and I have a good reason why
b) \mathbb{R}^{2} but I am unsure of why
c) the $y=x$ line but I am unsure of why
d) the $y=x$ line and I have a good reason why
e) other

Image credit: Zach Lieberman
4. To rotate a figure $\left[\begin{array}{ccc}x_{1} & \ldots & x_{p} \\ y_{1} & \ldots & y_{p} \\ 1 & \ldots & 1\end{array}\right]$ about a point $(-2,3)$ we can:
a)

$$
\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
x_{1} & \ldots & x_{p} \\
y_{1} & \ldots & y_{p} \\
1 & \ldots & 1
\end{array}\right]
$$

b)

$$
\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
x_{1} & \ldots & x_{p} \\
y_{1} & \ldots & y_{p} \\
1 & \ldots & 1
\end{array}\right]
$$

c) $\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}x_{1} & \ldots & x_{p} \\ y_{1} & \ldots & y_{p} \\ 1 & \ldots & 1\end{array}\right]$
d) more than one of the above
e) none of the above
5. Which of the following are true about linear transformations?
a) points go in as column vectors, and the first column of the transformation represents the output of the unit x-axis
b) we must use homogeneous coordinates (higher dimensional coordinate=1) if we want to use translations
c) they compose like functions with the first transformation on the right
d) two of the above
e) all of a), b) and c)

https://pbs.twimg.com/media/BhKmT5RIYAA4iU6.jpg:large
6. Let $T: \vec{x} \rightarrow A \vec{x}$ be given as a linear transformation arising from a square 2×2 matrix A. Assume that the set of all outputs \vec{b} (from $A \vec{x}=\vec{b}$) is a line. What can we deduce?
a) The columns of A do not span \mathbb{R}^{2} and I can think of an example
b) The columns of A do not span \mathbb{R}^{2} but I can not think of an example
c) The columns of A span \mathbb{R}^{2} and I can think of an example
d) The columns of A span \mathbb{R}^{2} but I can not think of an example
6. Let $T: \vec{x} \rightarrow A \vec{x}$ be given as a linear transformation arising from a square 2×2 matrix A. Assume that the set of all outputs \vec{b} (from $A \vec{x}=\vec{b}$) is a line. What can we deduce?
a) The columns of A do not span \mathbb{R}^{2} and I can think of an example
b) The columns of A do not span \mathbb{R}^{2} but I can not think of an example
c) The columns of A span \mathbb{R}^{2} and I can think of an example
d) The columns of A span \mathbb{R}^{2} but I can not think of an example

7. To turn a car so that it points in the direction of motion, we
a) define a unit vector in the direction of the velocity (tangent) of the curve by dividing by its length/norm so it won't change the size of the car
b) create an orthogonal vector to pair with it in a rotation matrix by creating a vector on a line with negative reciprocal slope (swap x and y and introduce a negative sign)
c) both of the above

VLA Package from Visual Linear Algebra by Herman and Pepe
8. To keep a car on a curved race track, we can perform the appropriate matrix operations in the following order

c) either works
d) none of the above

9. To rotate Yoda, who was given in row vectors as opposed to column vectors, we made use of
a) a matrix that rotates about a line in 3-space
b) $(A B)^{T}=B^{T} A^{T}$
c) Both of the above
d) none of the above

$$
\left[\begin{array}{l}
\cos 90^{\circ} \\
\sin 90^{\circ} \\
-\sin 90^{\circ} \\
\cos 90^{\circ}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=00
$$

https://xkcd.com/184/

[^0]: Image credit: https://www.nrcan.gc.ca/earth-sciences/geomatics/

