1. Which of the following statements about are true about the nullspace (or null space) and column space of $M=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$.
Note that M is row equivalent to $M=\left[\begin{array}{cc}1 & 4 \\ 0 & -3 \\ 0 & 0\end{array}\right]$ and when M is augmented with a generic vector and reduced to Gaussian, the last row becomes $\left[\begin{array}{lll}0 & 0 & b_{1}-2 b_{2}+b_{3}\end{array}\right]$
a) The column space is the plane $b_{1}-2 b_{2}+b_{3}=0$ in \mathbb{R}^{3}
b) The column space is the plane $s\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+t\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$ in \mathbb{R}^{3}
c) The nullspace is the zero vector in \mathbb{R}^{2}
d) more than one of the above, but not all of them
e) all of a), b), and c)

2. If a matrix is not square, then the column space is a subspace of

a) $\mathbb{R}^{\text {number of rows }}$

b) $\mathbb{R}^{\text {number of columns }}$
c) further work must be done to tell
[нтмц] The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools
I Famili, BO Palsson - Biophysical journal, 2003 - Elsevier
... between the reaction rate vectors, v , and time derivative of metabolite concentrations, $\mathrm{dx} / \mathrm{dt}$ or
x^{*}. Each two subspaces in the domain (ie, the null space and row space) and codomain (ie, the left null space and column space) form orthogonal pairs with one another ...
I 92 Cited by 103 Related articles All 15 versions
Closed-loop subspace identification using the parity space
J Wang, SJ Qin - Automatica, 2006 - Elsevier
... It is shown that the column space of the observability matrix extracted from SOPIM is equivalent to that from SIMPCA-Wc ... (9), we have (11) $\lim N \rightarrow \infty 1 N(\Gamma f \perp) T[I-H f] Z f Z p T=0$. Therefore, $(\Gamma f \perp) T[I-H f]$ is in the left null space of $\lim N \rightarrow \infty(1 / N) Z f Z p T$. If we ...
公 92 Cited by 92 Related articles All 6 versions
Production frontiers with cross-sectional and time-series variation in efficiency levels
C Cornwell, P Schmidt, RC Sickles - Journal of econometrics, 1990 - Elsevier

$$
\ldots \text { Let } P L,=Q\left(Q^{\prime} Q>-\mid Q^{\prime} \text { be the projection onto the column space of } Q \text { and } M L,=1-P p\right. \text { be the }
$$ projection onto the null space of Q. We derive three different estimators for (2.3), each of which is a straight- forward extension of an established procedure for the standard panel data ...

is 92 Cited by 1352 Related articles All 13 versions 00
Degrees of freedom of the MIMO Y channel: Signal space alignment for network coding
N Lee, JB Lim, J Chun - IEEE Transactions on Information ..., 2010 - ieeexplore.ieee.org
... designed to lie in the null space of channel matrix, ie ... Since all users have antennas and the relay equips antennas, there exists a -dimensional intersection subspace consti- tuted by the column space of channel matrices for each user pair. Let denote the ...
i 50 Cited by 216 Related articles All 5 versions
Google Search for null space and column space
3. The definition of a basis is a linearly independent spanning set for V. Which of the following also describes a basis?
a) A basis is a minimal spanning set for V
b) A basis is a largest possible set of linearly independent vectors in V
c) An efficient way (linearly independent) to represent a space (span) linearly
d) all of the above
e) two of the above

LIVING IN A NULLLSPACE

BY NULL

