1. Which of the following could relate to determinants?
a) invertibility of a 2×2 matrix
b) determinant 1 (or -1) coding matrix with integer entries will ensure we don't pick up fractions in the decoding matrix
c) both of the above

2. Which of the following matrices does not have an inverse?
a) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
b) $\left[\begin{array}{ll}2 & 2 \\ 4 & 4\end{array}\right]$
c) $\left[\begin{array}{ll}0 & 4 \\ 2 & 0\end{array}\right]$
d) more than one do not have inverses
e) all have inverses

Cayley's [1855] introductory paper in matrix theory introduces... the ideas of inverse matrix and of matrix multiplication, or "compounding" as Cayley called it [Richard Feldmann]
3. Which of the following are true about the matrix $A=$
a) determinant of A is 1
b) A is a vertical shear matrix
c) When we multiply $A B_{2 \times n}$ then we have applied $r_{2}^{\prime}=k r_{1}+r_{2}$ to B, because A is the elementary matrix representing that row operation
d) more than one of the above
e) all of the above

Resolution of two-way data from hyphenated chromatography by means of elementary matrix transformations
R Manne, BV Grande - Chemometrics and Intelligent Laboratory Systems, 2000 - Elsevier Data from mixtures studied by hyphenated chromatography, eg, HPLC-DAD and similar techniques, are resolved into spectra and concentration profiles by an iterative technique using elementary matrix transformations. Applications are made to one artificial data set and ...
4. By hand, use Laplace expansion as directed
$\left[\begin{array}{ccccc}5 & 2 & 0 & 0 & -2 \\ 0 & 1 & 4 & 3 & 2 \\ 0 & 0 & 2 & 6 & 3 \\ 0 & 0 & 3 & 4 & 1 \\ 0 & 0 & 0 & 0 & 2\end{array}\right]$

Step 1: First expand down the first column to take advantage of the 0 s . You'll have one nonzero term.
Step 2: then down the 1st column of the resulting 4×4 matrix Step 3: then along the 3rd row of the 3×3 matrix. The determinant is
a) 100
b) 0
c) -100
d) -10
e) none of the above
5. Which of the following statements is true?
a) If a square matrix has two identical rows then its determinant is zero.
b) If the determinant of a matrix is zero, then the matrix has two identical rows.
c) both
d) none of the above

How Good Is Your Mathematical Reasoning?

6. Suppose the determinant of matrix A is zero. How many solutions does the system $A \vec{x}=0$ have?
a) 0
b) 1
c) 2
d) infinite
e) other

The Nine Chapters on the Mathematical Art
7. We find that for a square coefficient matrix A, the homogeneous matrix equation $A \vec{x}=\overrightarrow{0}$, has only the trivial solution $\vec{x}=\overrightarrow{0}$. This means that
a) A has a 0 determinant
b) A has a nonzero determinant
c) This tells us nothing about the determinant

8. Suppose the determinant of matrix A is zero. How many solutions does the system $A \vec{x}=\vec{b}$ have?
a) 0
b) 1
c) infinite
d) 0,1 , or infinite-it depends on what \vec{b} is.
e) 0 or infinite-it depends on what \vec{b} is.

A short survey of some recent applications of determinants
PR Vein - Linear Algebra and its Applications, 1982 - Elsevier
Determinants declined in prestige from the mid-nineteenth century onwards and are now best known for their applications in matrix theory, where they appear in a subsidiary role. However, during the last thirty years determinants have arisen independently of matrices in ...
\& 20 Cited by 11 Related articles All 3 versions
[воок] Determinants and their applications in mathematical physics
R Vein, P Dale - 2006 - books.google.com
The last treatise on the theory of determinants, by T. Muir, revised and enlarged by WH Metzler, was published by Dover Publications Inc. in 1960. It is an unabridged and corrected republication of the edition ori-nally published by Longman, Green and Co. in 1933 and ...
$\sum 29$ Cited by 198 Related articles All 16 versions 80
Google Scholar search of applications of determinants
9. If A is an invertible matrix, what else must be true?
a) If $A B=C$ then $B=A^{-1} C$
b) the columns of A span the entire space
c) $5 A$ is invertible
d) the reduced row echelon form of A is I
e) all of the above must be true

Use linear algebra to find the identity of superman.

http://spikedmath.com/042.html
10. In exercise $3.3 \# 19$, the area of the parallelogram is 8 , because that is the determinant of $A=\left[\begin{array}{ll}5 & 6 \\ 2 & 4\end{array}\right]$. Can we find a rectangle that creates a matrix that is row equivalent to A with the same area?
a) impossible with the conditions given
b) it is possible but I am stuck on how to do so
c) yes and I can explain how
10. In exercise $3.3 \# 19$, the area of the parallelogram is 8 , because that is the determinant of $A=\left[\begin{array}{ll}5 & 6 \\ 2 & 4\end{array}\right]$. Can we find a rectangle that creates a matrix that is row equivalent to A with the same area?
a) impossible with the conditions given
b) it is possible but I am stuck on how to do so
c) yes and I can explain how

