$\vec{v}_1, \vec{v}_2, ... \vec{v}_k$ is linearly independent if

The span of $\vec{v}_1, \vec{v}_2, ... \vec{v}_k$ is

A matrix is in Gaussian or row echelon form if

A matrix is in Gauss-Jordan or reduced row echelon form if

 \vec{v} is a linear combination of $\vec{v}_1, \vec{v}_2, ... \vec{v}_k$ if

A matrix $A_{n\times n}$ is invertible if there exists

If a matrix $A_{m \times n}$ has full row pivots

If a matrix $A_{m \times n}$ has full column pivots

A pivot is

The diagonal of the parallelogram formed by vectors \vec{v} and \vec{w} is

One definition of AB is

The dot product of \vec{v} and \vec{w} is

The determinant of $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is

 $t\vec{v} + \vec{w}$ represents