$\vec{v}_1, \vec{v}_2, ... \vec{v}_k$ is linearly independent if

The span of $\vec{v}_1, \vec{v}_2, ... \vec{v}_k$ is

 \vec{v} is a linear combination of $\vec{v}_1, \vec{v}_2, ... \vec{v}_k$ if

 $\vec{v}_1, \vec{v}_2, ... \vec{v}_k$ span \mathbb{R}^n if

If a matrix $A_{m \times n}$ has full row pivots

If a matrix $A_{m \times n}$ has full column pivots

line vector \vec{v} is on

determinant of 3×3 via Laplace expansion

subspace

basis for a subspace

column space of A

null space of ${\cal A}$

eigenvalue

eigenvector

eigenvector decomposition