$\vec{v}_{1}, \vec{v}_{2}, \ldots \vec{v}_{k}$ is linearly independent if
The span of $\vec{v}_{1}, \vec{v}_{2}, \ldots \vec{v}_{k}$ is
\vec{v} is a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots \vec{v}_{k}$ if $\vec{v}_{1}, \vec{v}_{2}, \ldots \vec{v}_{k}$ span \mathbb{R}^{n} if

If a matrix $A_{m \times n}$ has full row pivots
If a matrix $A_{m \times n}$ has full column pivots
line vector \vec{v} is on
determinant of 3×3 via Laplace expansion
subspace
basis for a subspace
column space of A
null space of A
eigenvalue
eigenvector
eigenvector decomposition

