In Maple we execute

Eigenvectors(A);
and obtain the output $h, P:=\left[\begin{array}{c}\lambda_{1} \\ \lambda_{2} \\ \vdots \\ \lambda_{n}\end{array}\right],\left[\begin{array}{ccc}\mid & \mid & \\ v_{1} & v_{2} & \cdots \\ \mid & \mid & \\ & & \end{array}\right]$
Now $A P=\left[\begin{array}{ccc}\mid & \mid & \\ A v_{1} & A v_{2} & \cdots \\ \mid & \mid & \end{array}\right]$

In Maple we execute
Eigenvectors(A);
and obtain the output $h, P:=\left[\begin{array}{c}\lambda_{1} \\ \lambda_{2} \\ \vdots \\ \lambda_{n}\end{array}\right],\left[\begin{array}{ccc}\mid & \mid & \\ v_{1} & v_{2} & \cdots \\ \mid & \mid & \\ \text { Now } A P=\left[\begin{array}{ccc}\mid & \mid \\ A v_{1} & A v_{2} & \cdots \\ \mid & \mid\end{array}\right]=\left[\begin{array}{ccc}\mid & \mid & \\ \lambda_{1} v_{1} & \lambda_{2} v_{2} & \cdots \\ \mid & \mid & \end{array}\right]\end{array}\right.$.

In Maple we execute
Eigenvectors(A);
$\left.\begin{array}{l}\text { and obtain the output } h, P:=\left[\begin{array}{c}\lambda_{1} \\ \lambda_{2} \\ \vdots \\ \lambda_{n}\end{array}\right],\left[\begin{array}{ccc}\mid & \mid & \\ v_{1} & v_{2} & \cdots \\ \mid & \mid & \\ \hline\end{array}\right] \\ \text { Now } A P=\left[\begin{array}{ccc}A & \mid & \\ A v_{1} & A v_{2} & \cdots \\ \mid & \mid & \cdots\end{array}\right]=\left[\begin{array}{cc}\mid & \mid \\ \lambda_{1} & v_{1} \\ \mid & \lambda_{2} v_{2}\end{array}\right. \\ \hline\end{array}\right]$.
$\mathrm{D}=$ diagonal matrix with eigenvalues on the diagonal

In Maple we execute

Eigenvectors(A);

and obtain the output $h, P:=\left[\begin{array}{c}\lambda_{1} \\ \lambda_{2} \\ \vdots \\ \lambda_{n}\end{array}\right],\left[\begin{array}{ccc}\mid & \mid & \\ v_{1} & v_{2} & \cdots \\ \mid & \mid & \\ & & \end{array}\right]$
Now $\begin{aligned} A P & =\left[\begin{array}{ccc}\mid & \mid & \\ A v_{1} & A v_{2} & \cdots \\ \mid & \mid & \cdots\end{array}\right]=\left[\begin{array}{ccc}\mid & \mid & \\ \lambda_{1} v_{1} & \lambda_{2} v_{2} & \cdots \\ \mid & & \mid\end{array}\right] \\ & =\left[\begin{array}{ccc}\mid & \mid & \\ v_{1} & v_{2} & \cdots \\ \mid & \mid & \end{array}\right]\left[\begin{array}{ccc}\lambda_{1} & 0 & \cdots \\ 0 & \lambda_{2} & \cdots \\ & & \ddots\end{array}\right]=P D\end{aligned}$
D=diagonal matrix with eigenvalues on the diagonal
If the eigenvectors form a basis for \mathbb{R}^{n} then P is invertible and $P^{-1} A P=D$, i.e. A is called diagonalizable. Equivalently
$A=P D P^{-1}$

Application to computer graphics: Execute in Maple:
Proj $:=$ Matrix $\left(\left[\left[(\cos (\text { theta }))^{2}, \cos (\right.\right.\right.$ theta $) *$
$\sin ($ theta $)],\left[\cos (\right.$ theta $) * \sin ($ theta $\left.\left.\left.),\left((\sin (\text { theta }))^{2}\right)\right]\right]\right)$;
h,P:=Eigenvectors(Proj);
Diag:=simplify(MatrixInverse(P).A.P);

1. What geometric transformation is Diag?
a) rotation
b) reflection
c) shear
d) projection
e) dilation

Application to computer graphics: Execute in Maple:
Proj $:=$ Matrix $\left(\left[\left[(\cos (\text { theta }))^{2}, \cos (\right.\right.\right.$ theta $) *$
$\sin ($ theta $)],\left[\cos (\right.$ theta $) * \sin ($ theta $\left.\left.\left.),\left((\sin (\text { theta }))^{2}\right)\right]\right]\right)$;
h,P:=Eigenvectors(Proj);
Diag:=simplify(MatrixInverse(P).A.P);

1. What geometric transformation is Diag?
a) rotation
b) reflection
c) shear
d) projection
e) dilation

Writing out a transformation $A=P D P^{-1}$ is very useful in computer graphics: If we want to project a vector onto the $y=\tan (\theta) x$ line, first P^{-1} takes a vector and rotates it clockwise by theta [to the x-axis]. Next we perform Diag, which projects onto the x-axis, and finally we perform P, which rotates counterclockwise by theta [back to where we began].

