
Spectrum/Spectral Analysis = the Eigenvalues
~x → A~x = λ~x

vector linear transformation of vector scalar× eigenvector

f (x) → Ôf (x) = λf (x)
function linear operator on function scalar× eigenfunction

Ex 1: Schrödinger equation (quantum mechanics, chemistry)
Ô: Hamiltonian operator (for a one dimensional particle)
f (x) = wave function, λ = total energy of the particle

The shape of a standing wave in a string fixed at its boundaries
is an example of an eigenfunction of a differential operator. The
admissible eigenvalues are governed by the length of the string

and determine the frequency of oscillation. [Wikipedia]
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Ô: Hamiltonian operator (for a one dimensional particle)
f (x) = wave function, λ = total energy of the particle

The shape of a standing wave in a string fixed at its boundaries
is an example of an eigenfunction of a differential operator. The
admissible eigenvalues are governed by the length of the string

and determine the frequency of oscillation. [Wikipedia]

Dr. Sarah Waves and the Spectrum



Spectrum/Spectral Analysis = the Eigenvalues
~x → A~x = λ~x

vector linear transformation of vector scalar× eigenvector
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Ô: Hamiltonian operator (for a one dimensional particle)
f (x) = wave function, λ = total energy of the particle

The shape of a standing wave in a string fixed at its boundaries
is an example of an eigenfunction of a differential operator. The
admissible eigenvalues are governed by the length of the string

and determine the frequency of oscillation. [Wikipedia]
Dr. Sarah Waves and the Spectrum



~x → A~x = λ~x
vector linear transformation of vector scalar× eigenvector
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Ex 2: Spectrum of the Laplace operator
Ô = −∆: Laplace operator (divergence of gradient)

This solution of the vibrating drum problem is, at any point in
time, an eigenfunction of the Laplace operator on a disk

[Wikipedia]
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Engineering: If frequency of the wind too close to the
natural frequency of a bridge—oscillations.
Linearized model: eigenvalue of smallest magnitude
Tacoma Narrows Bridge collapse in 1940
Design of car stereo systems to reduce vibration of the car
due to music.
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