Eigenvalues λ and Eigenvectors \vec{x} of $A: A \vec{x}=\lambda \vec{x}$ - $\vec{x}_{1}=A \vec{x}_{0}=\lambda \vec{x}_{0}$

Eigenvalues λ and Eigenvectors \vec{x} of $A: A \vec{x}=\lambda \vec{x}$

- $\vec{x}_{1}=A \vec{x}_{0}=\lambda \vec{x}_{0}$
$\vec{x}_{2}=A \vec{x}_{1}=A\left(\lambda \vec{x}_{0}\right)=\lambda A \vec{x}_{0}=\lambda^{2} \vec{x}_{0}$ and similarly

Eigenvalues λ and Eigenvectors \vec{x} of $A: A \vec{x}=\lambda \vec{x}$

- $\vec{x}_{1}=A \vec{x}_{0}=\lambda \vec{x}_{0}$
$\vec{x}_{2}=A \vec{x}_{1}=A\left(\lambda \vec{x}_{0}\right)=\lambda A \vec{x}_{0}=\lambda^{2} \vec{x}_{0}$ and similarly
$\vec{x}_{k}=A^{k} \vec{x}_{0}=\lambda^{k} \vec{x}_{0}$

Eigenvalues λ and Eigenvectors \vec{x} of $A: A \vec{x}=\lambda \vec{x}$

- $\vec{x}_{1}=A \vec{x}_{0}=\lambda \vec{x}_{0}$

$$
\begin{aligned}
& \vec{x}_{2}=A \vec{x}_{1}=A\left(\lambda \vec{x}_{0}\right)=\lambda A \vec{x}_{0}=\lambda^{2} \vec{x}_{0} \text { and similarly } \\
& \vec{x}_{k}=A^{k} \vec{x}_{0}=\lambda^{k} \vec{x}_{0}
\end{aligned}
$$

- For a diagonalizable matrix A (where the eigenvectors form a basis for all of \mathbb{R}^{n}) we write initial populations \vec{x}_{0} in terms of the eigenvector basis of \mathbb{R}^{n} :

Eigenvalues λ and Eigenvectors \vec{x} of A : $A \vec{x}=\lambda \vec{x}$

- $\vec{x}_{1}=A \vec{x}_{0}=\lambda \vec{x}_{0}$

$$
\begin{aligned}
& \vec{x}_{2}=A \vec{x}_{1}=A\left(\lambda \vec{x}_{0}\right)=\lambda A \vec{x}_{0}=\lambda^{2} \vec{x}_{0} \text { and similarly } \\
& \vec{x}_{k}=A^{k} \vec{x}_{0}=\lambda^{k} \vec{x}_{0}
\end{aligned}
$$

- For a diagonalizable matrix A (where the eigenvectors form a basis for all of \mathbb{R}^{n}) we write initial populations \vec{x}_{0} in terms of the eigenvector basis of \mathbb{R}^{n} :
$\left[\begin{array}{l}\text { Initial Population 1 } \\ \text { Initial Population 2 }\end{array}\right]=a_{1}$ eigenvector $_{1}+a_{2}$ eigenvector $_{2}$

Eigenvalues λ and Eigenvectors \vec{x} of A : $A \vec{x}=\lambda \vec{x}$

- $\vec{x}_{1}=A \vec{x}_{0}=\lambda \vec{x}_{0}$

$$
\begin{aligned}
& \vec{x}_{2} A \vec{x}_{1}=A\left(\lambda \vec{x}_{0}\right)=\lambda A \vec{x}_{0}=\lambda^{2} \vec{x}_{0} \text { and similarly } \\
& \vec{x}_{k}=A^{k} \vec{x}_{0}=\lambda^{k} \vec{x}_{0}
\end{aligned}
$$

- For a diagonalizable matrix A (where the eigenvectors form a basis for all of \mathbb{R}^{n}) we write initial populations \vec{x}_{0} in terms of the eigenvector basis of \mathbb{R}^{n} :
$\left[\begin{array}{l}\text { Initial Population 1 } \\ \text { Initial Population } 2\end{array}\right]=a_{1}$ eigenvector $_{1}+a_{2}$ eigenvector $_{2}$
Then the eigenvector decomposition is:
$\left[\begin{array}{l}\text { Time k Population 1 } \\ \text { Time k Population 2 }\end{array}\right]=a_{1} \lambda_{1}^{k}$ eigenvector $_{1}+a_{2} \lambda_{2}^{k}$ eigenvector $_{2}$

Eigenvalues λ and Eigenvectors \vec{x} of A : $A \vec{x}=\lambda \vec{x}$

- $\vec{x}_{1}=A \vec{x}_{0}=\lambda \vec{x}_{0}$
$\vec{x}_{2}=A \vec{x}_{1}=A\left(\lambda \vec{x}_{0}\right)=\lambda A \vec{x}_{0}=\lambda^{2} \vec{x}_{0}$ and similarly
$\vec{x}_{k}=A^{k} \vec{x}_{0}=\lambda^{k} \vec{x}_{0}$
- For a diagonalizable matrix A (where the eigenvectors form a basis for all of \mathbb{R}^{n}) we write initial populations \vec{x}_{0} in terms of the eigenvector basis of \mathbb{R}^{n} :
$\left[\begin{array}{l}\text { Initial Population 1 } \\ \text { Initial Population } 2\end{array}\right]=a_{1}$ eigenvector $_{1}+a_{2}$ eigenvector $_{2}$
Then the eigenvector decomposition is:
$\left[\begin{array}{l}\text { Time k Population 1 } \\ \text { Time k Population 2 }\end{array}\right]=a_{1} \lambda_{1}^{k}$ eigenvector $_{1}+a_{2} \lambda_{2}^{k}$ eigenvector $_{2}$
- In the longterm, for most starting positions, the system (circle one): dies off, stabilizes, grows as the line with equation $y=$ \qquad corresponding to the eigenvector \qquad , except if the coefficient of \qquad equals 0 , then the system (circle one): dies off, stabilizes, grows corresponding to \qquad .

