Eigenvalues λ and Eigenvectors \vec{x} of $A: A \vec{x}=\lambda \vec{x}$

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

Eigenvalues λ and Eigenvectors \vec{x} of $A: A \vec{x}=\lambda \vec{x}$

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

- matrix multiplication to scalar multiplication
- A keeps eigenvectors on the same line through $\overrightarrow{0}$ scaled by λ To solve for eigenvectors of A, notice

Eigenvalues λ and Eigenvectors \vec{x} of $A: A \vec{x}=\lambda \vec{x}$

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

- matrix multiplication to scalar multiplication
- A keeps eigenvectors on the same line through $\overrightarrow{0}$ scaled by λ

To solve for eigenvectors of A, notice

$$
\begin{gathered}
A \vec{x}=\lambda \vec{x}=\lambda(I \vec{x})=(\lambda I) \vec{x} \\
A \vec{x}-(\lambda I) \vec{x}=\overrightarrow{0} \\
(A-\lambda I) \vec{x}=\overrightarrow{0}
\end{gathered}
$$

so we can solve for the nullspace of $(A-\lambda /)$. We want nontrivial solutions, so

Eigenvalues λ and Eigenvectors \vec{x} of $A: A \vec{x}=\lambda \vec{x}$

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

- matrix multiplication to scalar multiplication
- A keeps eigenvectors on the same line through $\overrightarrow{0}$ scaled by λ

To solve for eigenvectors of A, notice

$$
\begin{gathered}
A \vec{x}=\lambda \vec{x}=\lambda(I \vec{x})=(\lambda I) \vec{x} \\
A \vec{x}-(\lambda I) \vec{x}=\overrightarrow{0} \\
(A-\lambda I) \vec{x}=\overrightarrow{0}
\end{gathered}
$$

so we can solve for the nullspace of $(A-\lambda /)$. We want nontrivial solutions, so determinant $(A-\lambda I)=0$ let's us solve for any λ s first.

Eigenvalues λ and Eigenvectors \vec{x} of $A: A \vec{x}=\lambda \vec{x}$

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

- matrix multiplication to scalar multiplication
- A keeps eigenvectors on the same line through $\overrightarrow{0}$ scaled by λ

To solve for eigenvectors of A, notice

$$
\begin{gathered}
A \vec{x}=\lambda \vec{x}=\lambda(I \vec{x})=(\lambda I) \vec{x} \\
A \vec{x}-(\lambda I) \vec{x}=\overrightarrow{0} \\
(A-\lambda I) \vec{x}=\overrightarrow{0}
\end{gathered}
$$

so we can solve for the nullspace of $(A-\lambda /)$. We want nontrivial solutions, so determinant $(A-\lambda I)=0$ let's us solve for any λ s first.
Example: $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Q1: Is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ an eigenvector?

Eigenvalues λ and Eigenvectors \vec{x} of $A: A \vec{x}=\lambda \vec{x}$

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

- matrix multiplication to scalar multiplication
- A keeps eigenvectors on the same line through $\overrightarrow{0}$ scaled by λ

To solve for eigenvectors of A, notice

$$
\begin{gathered}
A \vec{x}=\lambda \vec{x}=\lambda(I \vec{x})=(\lambda I) \vec{x} \\
A \vec{x}-(\lambda I) \vec{x}=\overrightarrow{0} \\
(A-\lambda I) \vec{x}=\overrightarrow{0}
\end{gathered}
$$

so we can solve for the nullspace of $(A-\lambda /)$. We want nontrivial solutions, so determinant $(A-\lambda I)=0$ let's us solve for any λ s first.
Example: $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \quad$ Q1: Is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ an eigenvector?
Q2: $\operatorname{All} ?(A-\lambda I)=\left[\begin{array}{cc}-\lambda & 1 \\ 1 & -\lambda\end{array}\right]$.

Eigenvalues λ and Eigenvectors \vec{x} of $A: A \vec{x}=\lambda \vec{x}$

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

- matrix multiplication to scalar multiplication
- A keeps eigenvectors on the same line through $\overrightarrow{0}$ scaled by λ

To solve for eigenvectors of A, notice

$$
\begin{gathered}
A \vec{x}=\lambda \vec{x}=\lambda(I \vec{x})=(\lambda I) \vec{x} \\
A \vec{x}-(\lambda I) \vec{x}=\overrightarrow{0} \\
(A-\lambda I) \vec{x}=\overrightarrow{0}
\end{gathered}
$$

so we can solve for the nullspace of $(A-\lambda /)$. We want nontrivial solutions, so determinant $(A-\lambda I)=0$ let's us solve for any λ s first.
Example: $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \quad$ Q1: Is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ an eigenvector?
Q2: All? $(A-\lambda I)=\left[\begin{array}{cc}-\lambda & 1 \\ 1 & -\lambda\end{array}\right]$. First solve $0=\operatorname{det}(A-\lambda I)=\lambda^{2}-1$

Eigenvalues λ and Eigenvectors \vec{x} of $A: A \vec{x}=\lambda \vec{x}$

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

- matrix multiplication to scalar multiplication
- A keeps eigenvectors on the same line through $\overrightarrow{0}$ scaled by λ

To solve for eigenvectors of A, notice

$$
\begin{gathered}
A \vec{x}=\lambda \vec{x}=\lambda(I \vec{x})=(\lambda I) \vec{x} \\
A \vec{x}-(\lambda I) \vec{x}=\overrightarrow{0} \\
(A-\lambda I) \vec{x}=\overrightarrow{0}
\end{gathered}
$$

so we can solve for the nullspace of $(A-\lambda /)$. We want nontrivial solutions, so determinant $(A-\lambda I)=0$ let's us solve for any λ s first.
Example: $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Q1: Is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ an eigenvector?
Q2: All? $(A-\lambda I)=\left[\begin{array}{cc}-\lambda & 1 \\ 1 & -\lambda\end{array}\right]$. First solve $0=\operatorname{det}(A-\lambda I)=\lambda^{2}-1$
Plug each λ in to solve for the nullspace of $(A-\lambda /)$. Augmented:
$\left[\begin{array}{ccc}-\lambda & 1 & 0 \\ 1 & -\lambda & 0\end{array}\right]$ reduce \& parametrize. Geometrically: reflection.

