

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

- matrix multiplication to scalar multiplication
- A keeps eigenvectors on the same line through $\vec{0}$ scaled by λ

To solve for eigenvectors of A, notice

A E > A E >

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

- matrix multiplication to scalar multiplication
- A keeps eigenvectors on the same line through $\vec{0}$ scaled by λ

To solve for eigenvectors of A, notice

$$\begin{aligned} A\vec{x} &= \lambda \vec{x} = \lambda (I\vec{x}) = (\lambda I)\vec{x} \\ A\vec{x} - (\lambda I)\vec{x} &= \vec{0} \\ (A - \lambda I)\vec{x} &= \vec{0} \end{aligned}$$

so we can solve for the nullspace of $(A - \lambda I)$. We want nontrivial solutions, so

通 とう ほう う ほうし

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

- matrix multiplication to scalar multiplication
- A keeps eigenvectors on the same line through $\vec{0}$ scaled by λ

To solve for eigenvectors of A, notice

$$\begin{aligned} A\vec{x} &= \lambda \vec{x} = \lambda (I\vec{x}) = (\lambda I)\vec{x} \\ A\vec{x} - (\lambda I)\vec{x} &= \vec{0} \\ (A - \lambda I)\vec{x} &= \vec{0} \end{aligned}$$

so we can solve for the nullspace of $(A - \lambda I)$. We want nontrivial solutions, so determinant $(A - \lambda I) = 0$ let's us solve for any λ s first.

伺き くほき くほう

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

- matrix multiplication to scalar multiplication
- A keeps eigenvectors on the same line through $\vec{0}$ scaled by λ

To solve for eigenvectors of A, notice

$$\begin{aligned} A\vec{x} &= \lambda \vec{x} = \lambda (I\vec{x}) = (\lambda I)\vec{x} \\ A\vec{x} &- (\lambda I)\vec{x} = \vec{0} \\ (A - \lambda I)\vec{x} &= \vec{0} \end{aligned}$$

so we can solve for the nullspace of $(A - \lambda I)$. We want nontrivial solutions, so determinant $(A - \lambda I) = 0$ let's us solve for any λ s first. Example: $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ Q1: Is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ an eigenvector?

★@◆★ 御★★ 御★ 三臣

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

- matrix multiplication to scalar multiplication
- A keeps eigenvectors on the same line through $\vec{0}$ scaled by λ

To solve for eigenvectors of A, notice

$$\begin{aligned} A\vec{x} &= \lambda \vec{x} = \lambda (I\vec{x}) = (\lambda I)\vec{x} \\ A\vec{x} - (\lambda I)\vec{x} &= \vec{0} \\ (A - \lambda I)\vec{x} &= \vec{0} \end{aligned}$$

so we can solve for the nullspace of $(A - \lambda I)$. We want nontrivial solutions, so determinant $(A - \lambda I) = 0$ let's us solve for any λ s first. Example: $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ Q1: Is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ an eigenvector? Q2: All? $(A - \lambda I) = \begin{bmatrix} -\lambda & 1 \\ 1 & -\lambda \end{bmatrix}$.

<回とくほとくほと…

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

- matrix multiplication to scalar multiplication
- A keeps eigenvectors on the same line through $\vec{0}$ scaled by λ

To solve for eigenvectors of A, notice

$$\begin{aligned} A\vec{x} &= \lambda \vec{x} = \lambda (I\vec{x}) = (\lambda I)\vec{x} \\ A\vec{x} &- (\lambda I)\vec{x} = \vec{0} \\ (A - \lambda I)\vec{x} &= \vec{0} \end{aligned}$$

so we can solve for the nullspace of $(A - \lambda I)$. We want nontrivial solutions, so determinant $(A - \lambda I) = 0$ let's us solve for any λ s first. Example: $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ Q1: Is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ an eigenvector? Q2: All? $(A - \lambda I) = \begin{bmatrix} -\lambda & 1 \\ 1 & -\lambda \end{bmatrix}$. First solve $0 = \det(A - \lambda I) = \lambda^2 - 1$

イロト 不得 とくほ とくほ とうほ

Image citation: Shin Takahashi and Iroha Inoue The Manga Guide to Linear Algebra

- matrix multiplication to scalar multiplication
- A keeps eigenvectors on the same line through $\vec{0}$ scaled by λ

To solve for eigenvectors of A, notice

$$\begin{aligned} A\vec{x} &= \lambda \vec{x} = \lambda (I\vec{x}) = (\lambda I)\vec{x} \\ A\vec{x} &- (\lambda I)\vec{x} = \vec{0} \\ (A - \lambda I)\vec{x} &= \vec{0} \end{aligned}$$

so we can solve for the nullspace of $(A - \lambda I)$. We want nontrivial solutions, so determinant $(A - \lambda I) = 0$ let's us solve for any λ s first. Example: $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ Q1: Is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ an eigenvector? Q2: All? $(A - \lambda I) = \begin{bmatrix} -\lambda & 1 \\ 1 & -\lambda \end{bmatrix}$. First solve $0 = \det(A - \lambda I) = \lambda^2 - 1$ Plug each λ in to solve for the nullspace of $(A - \lambda I)$. Augmented: $\begin{bmatrix} -\lambda & 1 & 0 \\ 1 & -\lambda & 0 \end{bmatrix}$ reduce & parametrize. Geometrically: reflection.