1)	What is the definition of eigenvalue?	of eigenvector?
----	---------------------------------------	-----------------

- 2) How do we solve for eigenvalues? for eigenvectors?
- 3) If a matrix is triangular, are the eigenvalues on the diagonal? Why or why not?
- 4) What is the Maple output of the Eigenvectors command applied to $A = \begin{bmatrix} \frac{6}{10} & \frac{4}{10} \\ -\frac{125}{100} & \frac{12}{10} \end{bmatrix}$?
- 5) What are the eigenvalues of A?
- 6) What are the eigenvectors of A?
- 7) Do the eigenvectors of A span the entire space they are inside of (\mathbb{R}^2 for this example)?
- 8) How can we tell?
- 9) Fill in the blanks if \vec{x}_0 is an eigenvector of A: $\vec{x}_1 = A\vec{x}_0 = \underline{x}_0$ $\vec{x}_k = A^k\vec{x}_0 = \underline{x}_0$
- 10) If the eigenvectors of A span the entire space, fill in the blanks to write any initial condition \vec{x}_0 as a linear combination of the eigenvectors of A
 - $\vec{x}_0 = a_1 \underline{\qquad} + a_2 \underline{\qquad}$
- 11) If it exists, what is the eigenvector decomposition for A?
- 12) What does the trajectory look like for an initial vector in quadrant 1 that does not begin on either eigenvector? Select one:
 - dies off to the origin asymptotic to one eigenvector (dominant eigenvalue < 1)
 - grows asymptotic to one eigenvector (dominant eigenvalue > 1)
 - comes in parallel to one eigenvector with smaller and smaller contributions until we hit the other (dominant eigenvalue = 1)
- 13) Say that A represents the changes from one year to the next in a system of foxes (x-value) and rabbits (y-value). For most initial conditions, what ratio do the populations tend to in the longrun?

_____ foxes to _____ rabbits which we get from the dominant eigenvector of _____

- 14) What is the yearly rate (growth rate, die off rate, or stability rate)? Show work.
- 15) Sketch a by-hand plot of the two eigenvectors. Add to the trajectory plot by selecting a starting position in the 1st quadrant that is not on either eigenvector and following the long-term behavior.