1) What is the definition of eigenvalue? of eigenvector?
2) How do we solve for eigenvalues? for eigenvectors?
3) If a matrix is triangular, are the eigenvalues on the diagonal? Why or why not?
4) What is the Maple output of the Eigenvectors command applied to $A=\left[\begin{array}{cc}\frac{6}{10} & \frac{4}{10} \\ -\frac{125}{1000} & \frac{12}{10}\end{array}\right]$?
5) What are the eigenvalues of A ?
6) What are the eigenvectors of A ?
7) Do the eigenvectors of A span the entire space they are inside of (\mathbb{R}^{2} for this example)?
8) How can we tell?
9) Fill in the blanks if \vec{x}_{0} is an eigenvector of $A: \quad \vec{x}_{1}=A \vec{x}_{0}=\ldots \quad \vec{x}_{0} \quad \vec{x}_{k}=A^{k} \vec{x}_{0}=\ldots \quad \vec{x}_{0}$
10) If the eigenvectors of A span the entire space, fill in the blanks to write any initial condition \vec{x}_{0} as a linear combination of the eigenvectors of A
$\vec{x}_{0}=a_{1}$ \qquad $+a_{2}$ \qquad
11) If it exists, what is the eigenvector decomposition for A ?
12) What does the trajectory look like for an initial vector in quadrant 1 that does not begin on either eigenvector? Select one:

- dies off to the origin asymptotic to one eigenvector (dominant eigenvalue <1)
- grows asymptotic to one eigenvector (dominant eigenvalue >1)
- comes in parallel to one eigenvector with smaller and smaller contributions until we hit the other (dominant eigenvalue $=1$)

13) Say that A represents the changes from one year to the next in a system of foxes (x-value) and rabbits (y-value). For most initial conditions, what ratio do the populations tend to in the longrun?
\qquad foxes to \qquad rabbits which we get from the dominant eigenvector of \qquad
14) What is the yearly rate (growth rate, die off rate, or stability rate)? Show work.
15) Sketch a by-hand plot of the two eigenvectors. Add to the trajectory plot by selecting a starting position in the 1st quadrant that is not on either eigenvector and following the long-term behavior.
