1. If the columns of a 7×7 matrix D are linearly independent, what can be said about the solutions $D \vec{x}=\vec{b}$ for a given 7×1 vector \vec{b} (where \vec{x} is 7×1 too)?
a) $D \vec{x}=\vec{b}$ always has at least one solution, but we cannot say anything more about the solution or solutions
b) $D \vec{x}=\vec{b}$ always has a unique solution, but we cannot say anything more about it
c) $D \vec{x}=\vec{b}$ always has a unique solution, and I can tell you what it is
d) $D \vec{x}=\vec{b}$ always has infinite solutions
e) $D \vec{x}=\vec{b}$ has no solutions for some \vec{b} and infinite solutions for other \vec{b}
2. If the columns of a 7×6 matrix D are linearly independent, what can be said about the solutions $D \vec{x}=\vec{b}$ for a given 7×1 vector \vec{b} (where \vec{x} is 6×1)?
a) $D \vec{x}=\vec{b}$ always has at least one solution, but we cannot say anything more about the solution or solutions
b) $D \vec{x}=\vec{b}$ always has a unique solution
c) $D \vec{x}=\vec{b}$ has no solutions for some \vec{b} and infinite solutions for other \vec{b}
d) $D \vec{x}=\vec{b}$ has one solution for some \vec{b} and no solutions for other \vec{b}
e) We can reason that $D \vec{x}=\vec{b}$ has 0,1 , or infinite solutions as with any linear system, but we cannot specify the solutions any further.
$A B=\left[\begin{array}{lll}A \cdot \operatorname{col} 1 B & \ldots & A \cdot \operatorname{coln} B\end{array}\right]$
pivot arguments:

- $A_{n \times n}$ must have full pivots to be invertible because it reduces to the identity matrix I so you can make use of the full pivots
- $A_{n \times n}$ must be missing both row and column pivots if it isn't invertible so you can make use of missing pivots
- A not square must be missing a row pivot or a column pivot (but not necessarily both)

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

Multiply both sides: $A^{-1}(A \vec{x})=A^{-1} \vec{b}$
Reorder by associativity: $\left(A^{-1} A\right) \vec{x}=A^{-1} \vec{b}$
Cancel A by its inverse: $I_{n \times n} \vec{x}=A^{-1} \vec{b}$
Reduce identity: $\vec{x}=A^{-1} \vec{b}$

- Hill Cipher: message goes in as column vectors
- A.[uncoded message] $=$ [coded message]

A col1=start of message ... coln=end of message

- [uncoded message] = A^{-1}.[coded message]
- Vulnerable because of its linearity-intercept enough vector correspondances (uncoded and coded)
- Condition Number Roundoff Errors: asymptotically worst case loss of accuracy: 1019: 19 digits $=k$, order
- Using r digits gets at least $r-k$ accuracy [ex: 21-19=2]
- hard to numerically distinguish between a non-invertible matrix and one with a large condition number

Catalog description: A study of vectors, matrices and linear transformations, principally in two and three dimensions, including treatments of systems of linear equations, determinants, and eigenvalues. Prerequisite: MAT 1120 or permission of the instructor. Course Goals

- Develop algebraic skills
- Develop mathematical reasoning and problem solving
- Develop spatial visualization skills
- Learn about some applications of linear algebra
- An introduction to a computer algebra software system as it applies to linear algebra
Mapping of the Topics in the Catalog Description to the Text
Systems of Linear Equations: 1.1, 1.2, 1.5
Vectors: 1.3, 1.4, 1.7
Matrices: earlier +2.1, 2.2, 2.3
Linear transformations 1.8, 1.9 (1-1 \& onto eliminated), 2.7, 6.1
Determinants: 3.1, 3.2, 3.3
Eigenvalues 2.8, 5.1, 5.2, 5.6

