theoretical multiplication arguments:
$\left.\underset{\mathrm{OR}}{A B=} \begin{array}{lll}\text { A.col1B } & \text {... } & \text { A.colnB }\end{array}\right]$
Multiply both sides on side it makes sense: $A^{-1}(A \vec{x})=A^{-1} \vec{b}$
Reorder parentheses by associativity: $\left(A^{-1} A\right) \vec{x}=A^{-1} \vec{b}$
Cancel A by its inverse: $I_{n \times n} \vec{x}=A^{-1} \vec{b}$
Reduce identity: $\vec{x}=A^{-1} \vec{b}$
theoretical multiplication arguments:
${ }_{\mathrm{OR}}^{\mathrm{AB}}=\left[\begin{array}{lll}\text { A.col1B } & \text {... } & \text { A.colns }\end{array}\right]$
Multiply both sides on side it makes sense: $A^{-1}(A \vec{x})=A^{-1} \vec{b}$
Reorder parentheses by associativity: $\left(A^{-1} A\right) \vec{x}=A^{-1} \vec{b}$
Cancel A by its inverse: $I_{n \times n} \vec{x}=A^{-1} \vec{b}$
Reduce identity: $\vec{x}=A^{-1} \vec{b}$
pivot arguments:

- $A_{n \times n}$ must have full pivots to be invertible because by above $A \vec{x}=\vec{b}$ never inconsistent (full row pivots) and A is square so full column pivots too, and A reduces to $I_{n \times n}$
theoretical multiplication arguments:
${ }_{\mathrm{OR}}^{\mathrm{AB}}=\left[\begin{array}{lll}\text { A.col1B } & \text {... } & \text { A.colnB }\end{array}\right]$
Multiply both sides on side it makes sense: $A^{-1}(A \vec{x})=A^{-1} \vec{b}$
Reorder parentheses by associativity: $\left(A^{-1} A\right) \vec{x}=A^{-1} \vec{b}$
Cancel A by its inverse: $I_{n \times n} \vec{x}=A^{-1} \vec{b}$
Reduce identity: $\vec{x}=A^{-1} \vec{b}$
pivot arguments:
- $A_{n \times n}$ must have full pivots to be invertible because by above $A \vec{x}=\vec{b}$ never inconsistent (full row pivots) and A is square so full column pivots too, and A reduces to $I_{n \times n}$ [Conversely, if A reduces to $I_{n \times n}$ then same elementary matrices that turn A to $I_{n \times n}$ will turn $I_{n \times n}$ to A^{-1}, so A is invertible]
- $A_{n \times n}$ isn't invertible
theoretical multiplication arguments:
${ }_{\mathrm{OR}}^{\mathrm{AB}}=\left[\begin{array}{lll}\text { A.col1B } & \text {... } & \text { A.colnB }\end{array}\right]$
Multiply both sides on side it makes sense: $A^{-1}(A \vec{x})=A^{-1} \vec{b}$
Reorder parentheses by associativity: $\left(A^{-1} A\right) \vec{x}=A^{-1} \vec{b}$
Cancel A by its inverse: $I_{n \times n} \vec{x}=A^{-1} \vec{b}$
Reduce identity: $\vec{x}=A^{-1} \vec{b}$
pivot arguments:
- $A_{n \times n}$ must have full pivots to be invertible because by above $A \vec{x}=\vec{b}$ never inconsistent (full row pivots) and A is square so full column pivots too, and A reduces to $I_{n \times n}$ [Conversely, if A reduces to $I_{n \times n}$ then same elementary matrices that turn A to $I_{n \times n}$ will turn $I_{n \times n}$ to A^{-1}, so A is invertible]
- $A_{n \times n}$ isn't invertible must be missing row and column pivots
- A not square
theoretical multiplication arguments:
${ }_{\mathrm{OR}}^{A B}=\left[\begin{array}{lll}\text { A.col1 } B & \ldots & \text { A.colnB }\end{array}\right]$
Multiply both sides on side it makes sense: $A^{-1}(A \vec{x})=A^{-1} \vec{b}$
Reorder parentheses by associativity: $\left(A^{-1} A\right) \vec{x}=A^{-1} \vec{b}$
Cancel A by its inverse: $I_{n \times n} \vec{x}=A^{-1} \vec{b}$
Reduce identity: $\vec{x}=A^{-1} \vec{b}$
pivot arguments:
- $A_{n \times n}$ must have full pivots to be invertible because by above $A \vec{x}=\vec{b}$ never inconsistent (full row pivots) and A is square so full column pivots too, and A reduces to $I_{n \times n}$ [Conversely, if A reduces to $I_{n \times n}$ then same elementary matrices that turn A to $I_{n \times n}$ will turn $I_{n \times n}$ to A^{-1}, so A is invertible]
- $A_{n \times n}$ isn't invertible must be missing row and column pivots
- A not square must be missing a row pivot or a column pivot (but not necessarily both)

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Catalog description: A study of vectors, matrices and linear transformations, principally in two and three dimensions, including treatments of systems of linear equations, determinants, and eigenvalues. Prerequisite: MAT 1120 or permission of the instructor. Course Goals

- Develop algebraic skills
- Develop mathematical reasoning and problem solving
- Develop spatial visualization skills
- Learn about some applications of linear algebra
- An introduction to a computer algebra software system as it applies to linear algebra
Mapping of the Topics in the Catalog Description to the Text
Systems of Linear Equations: 1.1, 1.2, 1.5
Vectors: 1.3, 1.4, 1.7
Matrices: earlier +2.1, 2.2, 2.3
Linear transformations 1.8, 1.9 (1-1 \& onto eliminated), 2.7, 6.1
Determinants: 3.1, 3.2, 3.3
Eigenvalues 2.8, 5.1, 5.2, 5.6
- computer algebra software programs like Maple will output a condition number corresponding to a matrix.
- The order k in scientific notation $\left(10^{k}\right)$ is useful, rather than the number, which can be different in different programs
- computer algebra software programs like Maple will output a condition number corresponding to a matrix.
- The order k in scientific notation $\left(10^{k}\right)$ is useful, rather than the number, which can be different in different programs
- measures asymptotically worst case scenario that we may lose up to k digits in roundoff errors
- issue with decimals in the matrix, not with Maple
- using r digits gets at least $r-k$ accuracy [ex: 21-19=2]

- Hill Cipher: message goes in as column vectors
- A.[uncoded message] $=$ [coded message]
$A[$ col1=start of message $\ldots . \quad$ coln=end of message $]$
- [uncoded message] $=$
- Hill Cipher: message goes in as column vectors
- A.[uncoded message] = [coded message]

A col1=start of message ... coln=end of message

- [uncoded message] = A^{-1}.[coded message]
- Vulnerable because of its linearity-intercept enough vector correspondances (uncoded and coded) Key Expansion: Part 1

I need lots of keys for use in later rounds. I derive all
of them from the initial key using a simple mixing.
technique that's really fast. Despite its critics." it's good enough.

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
A Stick Figure Guide to the Advanced Encryption Standard (AES)

