Applications of Linear Transformations

 2.7 Applications to Computer Graphics \& Hill Cipher
http://spikedmath.com/comics/109-linear-transformations.png

Input red and output blue. What is the name and matrix?

Input red and output blue. What is the name and matrix?

Images created using VLA Package from Visual Linear Algebra by Herman and Pepe

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=
$$

Input red and output blue. What is the name and matrix?

Images created using VLA Package from Visual Linear Algebra by Herman and Pepe

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
a \\
c
\end{array}\right] \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
b \\
d
\end{array}\right]
$$

If we know where the unit x-axis and unit y-axis map to, we know the matrix of the linear transformation.

Input red and output blue. What are the names and matrices?

Images created using VLA Package from Visual Linear Algebra by Herman and Pepe

Math isn't important for programming and other hilarious jokes you can tell yourself

Input red and output blue. What are the names and matrices?

Images created using VLA Package from Visual Linear Algebra by Herman and Pepe

Input red and output blue. What are the names and matrices?

Images created using VLA Package from Visual Linear Algebra by Herman and Pepe

Input red and output blue. What are the names and matrices?

Images created using VLA Package from Visual Linear Algebra by Herman and Pepe

Composite Transformations

ABHouse

Composite Transformations

ABHouse

```
http://cs.appstate.edu/~sjg/class/2240/guess/images/guesstransformation_6.gif
```

Movie created using VLA Package from Visual Linear Algebra by Herman and Pepe

Transformations of \mathbb{R}^{2}

Rotation Matrix: $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$

$$
\text { Dilation Matrix: }\left[\begin{array}{ll}
c & 0 \\
0 & c
\end{array}\right]
$$

Horizontal Shear: $\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right] \quad$ Vertical Shear: $\left[\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right]$
Projection Matrix: $\left.: \begin{array}{cc}\cos (\theta)^{2} & \cos (\theta) \sin (\theta) \\ \cos (\theta) \sin (\theta) & \sin (\theta)^{2}\end{array}\right]$
Reflection Matrix: $\left[\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ \sin (\theta) & -\cos (\theta)\end{array}\right]$

- What important transformation is missing?

Translations and Homogeneous Coordinates

$$
\text { translation matrix? }\left[\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x+h \\
y+k
\end{array}\right]
$$

Translations and Homogeneous Coordinates

translation matrix? $\left[\begin{array}{ll}? & ? \\ ? & ?\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x+h \\ y+k\end{array}\right]$
translation matrix? $\left[\begin{array}{ccc}? & ? & ? \\ ? & ? & ? \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{c}x+h \\ y+k \\ 1\end{array}\right]$

Translations and Homogeneous Coordinates

$$
\text { translation matrix? }\left[\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x+h \\
y+k
\end{array}\right]
$$

$$
\text { translation matrix? }\left[\begin{array}{ccc}
? & ? & ? \\
? & ? & ? \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+h \\
y+k \\
1
\end{array}\right]
$$

translation: $\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$ triangle: $\left[\begin{array}{llll}4 & 4 & 6 & 4 \\ 3 & 9 & 3 & 3 \\ 1 & 1 & 1 & 1\end{array}\right]$

Rotate a Triangle About its Top Vertex

Step 1. Translate the triangle so the top vertex $\left[\begin{array}{l}4 \\ 9\end{array}\right]$ is at $\overrightarrow{0}$.
Step 2. Rotate the translated figure 45° about $\overrightarrow{0}$.
Step 3. Translate back from $\overrightarrow{0}$ to where we started at $\left[\begin{array}{l}4 \\ 9\end{array}\right]$

Rotate a Triangle About its Top Vertex

Step 1. Translate the triangle so the top vertex $\left[\begin{array}{l}4 \\ 9\end{array}\right]$ is at $\overrightarrow{0}$.
Step 2. Rotate the translated figure 45° about $\overrightarrow{0}$.
Step 3. Translate back from $\overrightarrow{0}$ to where we started at $\left[\begin{array}{l}4 \\ 9\end{array}\right]$
$\left[\begin{array}{lll}1 & 0 & 4 \\ 0 & 1 & 9 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos \left(\frac{\pi}{4}\right) & -\sin \left(\frac{\pi}{4}\right) & 0 \\ \sin \left(\frac{\pi}{4}\right) & \cos \left(\frac{\pi}{4}\right) & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -4 \\ 0 & 1 & -9 \\ 0 & 0 & 1\end{array}\right]$ Triangle

Rotate a Triangle About its Top Vertex

Step 1. Translate the triangle so the top vertex $\left[\begin{array}{l}4 \\ 9\end{array}\right]$ is at $\overrightarrow{0}$.
Step 2. Rotate the translated figure 45° about $\overrightarrow{0}$.
Step 3. Translate back from $\overrightarrow{0}$ to where we started at $\left[\begin{array}{l}4 \\ 9\end{array}\right]$
$\left[\begin{array}{lll}1 & 0 & 4 \\ 0 & 1 & 9 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos \left(\frac{\pi}{4}\right) & -\sin \left(\frac{\pi}{4}\right) & 0 \\ \sin \left(\frac{\pi}{4}\right) & \cos \left(\frac{\pi}{4}\right) & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -4 \\ 0 & 1 & -9 \\ 0 & 0 & 1\end{array}\right]$ Triangle

Rotate a Triangle About its Top Vertex

Step 1. Translate the triangle so the top vertex $\left[\begin{array}{l}4 \\ 9\end{array}\right]$ is at $\overrightarrow{0}$.
Step 2. Rotate the translated figure 45° about $\overrightarrow{0}$.
Step 3. Translate back from $\overrightarrow{0}$ to where we started at $\left[\begin{array}{l}4 \\ 9\end{array}\right]$

Which of the following are true about linear transformations?
a) points go in as column vectors, and the first column of the transformation represents the output of the unit x-axis
b) we must use homogeneous coordinates (higher dimensional coordinate=1) if we want to use translations
c) they compose like functions with the first transformation on the right
d) all of the above
e) two of the above

https://pbs.twimg.com/media/BhKmT5RIYAA4iU6.jpg:large

To rotate a figure $\left[\begin{array}{ccc}x_{1} & \ldots & x_{p} \\ y_{1} & \ldots & y_{p} \\ 1 & \ldots & 1\end{array}\right]$ about a point $(-2,3)$ we can:
a)

$$
\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
x_{1} & \ldots & x_{p} \\
y_{1} & \ldots & y_{p} \\
1 & \ldots & 1
\end{array}\right]
$$

b)

$$
\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
x_{1} & \ldots & x_{p} \\
y_{1} & \ldots & y_{p} \\
1 & \ldots & 1
\end{array}\right]
$$

c) $\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}x_{1} & \ldots & x_{p} \\ y_{1} & \ldots & y_{p} \\ 1 & \ldots & 1\end{array}\right]$
d) more than one of the above
e) none of the above

Making a Car Movie

How can we keep a car on the road?

Making a Car Movie

How can we keep a car on the road?
$\left[\begin{array}{ccc}1 & 0 & \cos (t) \\ 0 & 1 & \sin (2 t) \\ 0 & 0 & 1 \\ n \text { nttp: } / / \text { cs. appstate.eau/-s }\end{array}\right] \operatorname{car}$
How can we point the car in the direction of motion?

Making a Car Movie

How can we keep a car on the road?
$\left[\begin{array}{ccc}1 & 0 & \cos (t) \\ 0 & 1 & \sin (2 t) \\ 0 & 0 & 1\end{array}\right] \mathrm{car}$
http://cs.appstate.edu/~sjg/class/2240/c4s5racetrack/videos/c4s5racetrack_14.gif
How can we point the car in the direction of motion?

$$
\left[\begin{array}{ccc}
\frac{-\sin (t)}{\sqrt{\sin ^{2}(t)+4 \cos 2}(2 t)} & \frac{-2 \cos (2 t)}{\sqrt{\sin ^{2}(t)+4 \cos { }^{2}(2 t)}} & 0 \\
\frac{2 \cos (2 t)}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & \frac{-\sin (t)}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & 0 \\
0 & 0 & 1
\end{array}\right] \operatorname{car}
$$

http://cs.appstate.edu/~sjg/class/2240/c4s5racetrack/videos/c4s5racetrack_28.gif

Making a Car Movie

How can we keep a car on the road?
$\left[\begin{array}{ccc}1 & 0 & \cos (t) \\ 0 & 1 & \sin (2 t) \\ 0 & 0 & 1\end{array}\right] \mathrm{car}$
http://cs.appstate.edu/~sjg/class/2240/c4s5racetrack/videos/c4s5racetrack_14.gif
How can we point the car in the direction of motion?
$\left[\begin{array}{ccc}\frac{-\sin (t)}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & \frac{-2 \cos (2 t)}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & 0 \\ \frac{2 \cos (2 t)}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & \frac{-\sin ^{(t)}}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & 0 \\ 0 & 0 & 1\end{array}\right] \mathrm{car}$
http://cs.appstate.edu/~sjg/class/2240/c4s5racetrack/videos/c4s5racetrack_28.gif

$$
\left[\begin{array}{ccc}
1 & 0 & \cos (t) \\
0 & 1 & \sin (2 t) \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{-\sin (t)}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & \frac{-2 \cos (2 t)}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & 0 \\
\frac{2 \cos (2 t)}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & \frac{-\sin (t)}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & 0 \\
0 & 0 & 1
\end{array}\right] \operatorname{car}
$$

Order and Unit Norm Matters!

$$
\left[\begin{array}{ccc}
\frac{-\sin (t)}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & \frac{-2 \cos (2 t)}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & 0 \\
\frac{2 \cos (2 t)}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & \frac{-\sin (t)}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & \cos (t) \\
0 & 1 & \sin (2 t) \\
0 & 0 & 1
\end{array}\right] \operatorname{car}
$$

http://cs.appstate.edu/~sjg/class/2240/c4s5racetrack/videos/c4s5racetrack_29.gif

$$
\left[\begin{array}{ccc}
1 & 0 & \cos (t) \\
0 & 1 & \sin (2 t) \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
-\sin (t) & -2 \cos (2 t) & 0 \\
2 \cos (2 t) & -\sin (t) & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{car}
$$

http://cs.appstate.edu/~sjg/class/2240/c4s5racetrack/videos/c4s5racetrack_31.gif

To turn a car so that it points in the direction of motion, we
a) define a unit vector in the direction of the velocity (tangent) of the curve by dividing by its length/norm so it won't change the size of the car
b) create an orthogonal vector to pair with it in a rotation matrix by creating a vector on a line with negative reciprocal slope (swap x and y and introduce a negative sign)
c) both of the above

VLA Package from Visual Linear Algebra by Herman and Pepe

To keep a car on a curved race track, we can perform the appropriate matrix operations in the following order
a) $\left[\begin{array}{ccc}1 & 0 & \cos (t) \\ 0 & 1 & \sin (2 t) \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\frac{-}{} \frac{-\sin (t)}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & \frac{-2 \cos (2 t)}{\sqrt{\sin ^{2}(t)}+4 \cos ^{2}(2 t)} & 0 \\ \frac{\cos ^{2}(2)}{\sin ^{2}(t)+4 \cos ^{2}(2 t)} & \frac{\sin ^{(t)}}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & 0 \\ 0 & 0\end{array}\right]$ car
b) $\left[\begin{array}{ccc}\frac{-\sin (t)}{\sqrt{\sin ^{2}(t)+4 \cos ^{2}(2 t)}} & \frac{-2 \cos (2 t)}{\sqrt{\sin ^{2}(2)}(t)+\cos ^{2}(2 t)} & 0 \\ \frac{2 \cos ^{2}(t)}{\sqrt{\sin ^{2}(t)}\left(4+4 \cos ^{2}(2 t)\right.} & \frac{\sin }{\sqrt{\sin ^{2}(t)+(t)+4 \cos ^{2}(2 t)}} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & \cos (t) \\ 0 & 1 & \sin (2 t) \\ 0 & 0 & 1\end{array}\right] \operatorname{car}$
c) both of the above
d) none of the above

Linear Transformations of \mathbb{R}^{3} in Homogeneous Coords

Created using VLA Package from Visual Linear Algebra by Herman and Pepe

Yoda from Star Wars

data from Kecskemeti B. Zoltan (Lucasfilm LTD)

Yoda from Star Wars

data from Kecskemeti B. Zoltan (Lucasfilm LTD)
1 of 4667 in file 1: $\left[\begin{array}{lll}-1.355884 & 12.452657 & 0.927687 \\ -1.355386 & 12.449140 & 0.928006 \\ -1.356376 & 12.450524 & 0.924873\end{array}\right]$
1 of 29460 in file 2: $\left[\begin{array}{lll}-1.355386 & 12.449140 & 0.928006 \\ -1.355884 & 12.452657 & 0.927687 \\ -1.530717 & 12.421906 & 0.980687 \\ -1.529826 & 12.418444 & 0.980901\end{array}\right]$
$\left.(\text { Rot. } \text { Yoda })^{T}\right)^{T}=$ Yoda. Rot ${ }^{T}$ via $(A B)^{T}=B^{T} A^{T}$

Yoda from Star Wars

data from Kecskemeti B. Zoltan (Lucasfilm LTD)
1 of 4667 in file 1: $\left[\begin{array}{lll}-1.355884 & 12.452657 & 0.927687 \\ -1.355386 & 12.449140 & 0.928006 \\ -1.356376 & 12.450524 & 0.924873\end{array}\right]$
1 of 29460 in file 2: $\left[\begin{array}{lll}-1.355386 & 12.449140 & 0.928006 \\ -1.355884 & 12.452657 & 0.927687 \\ -1.530717 & 12.421806 & 0.980687 \\ -1.529826 & 12.418444 & 0.980901\end{array}\right]$
$\left.(\text { Rot. } \text { Yoda })^{T}\right)^{T}=$ Yoda.Rot ${ }^{T}$ via $(A B)^{T}=B^{T} A^{T}$
$\left[\begin{array}{ccc}\cos (\theta) & 0 & -\sin (\theta) \\ 0 & 1 & 0 \\ \sin (\theta) & 0 & \cos (\theta)\end{array}\right]^{T}=$

Yoda from Star Wars

data from Kecskemeti B. Zoltan (Lucasfilm LTD)
1 of 4667 in file 1: $\left[\begin{array}{lll}-1.355884 & 12.452657 & 0.927687 \\ -1.355386 & 12.449140 & 0.928006 \\ -1.356376 & 12.450524 & 0.924873\end{array}\right]$

1 of 29460 in file 2 :
$\left[\begin{array}{lll}-1.355386 & 12.449140 & 0.928006 \\ -1.355884 & 12.452657 & 0.927687 \\ -1.530717 & 12.421906 & 0.980687 \\ -1.529826 & 12.418444 & 0.980901\end{array}\right]$
$\left(\text { Rot. } \text { Yoda }{ }^{T}\right)^{T}=$ Yoda. Rot ${ }^{T}$ via $(A B)^{T}=B^{T} A^{T}$
$\left[\begin{array}{ccc}\cos (\theta) & 0 & -\sin (\theta) \\ 0 & 1 & 0 \\ \sin (\theta) & 0 & \cos (\theta)\end{array}\right]^{\top}=\left[\begin{array}{ccc}\cos (\theta) & 0 & \sin (\theta) \\ 0 & 1 & 0 \\ -\sin (\theta) & 0 & \cos (\theta)\end{array}\right]$

YodaRotated

data from Kecskemeti B. Zoltan (Lucasfâm LTD2)
Applications of Linear Transformations: 2.7 \& Hill Cipher

To rotate Yoda, who was given in row vectors as opposed to column vectors, we made use of
a) a matrix that rotates about a line in 3-space
b) $(A B)^{T}=B^{T} A^{T}$
c) both of the above
d) none of the above

$$
\left[\begin{array}{cc}
\cos 90^{\circ} & \sin 90^{\circ} \\
-\sin 90^{\circ} & \cos 90^{\circ}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=0
$$

https://xkcd.com/184/

Mechanical Message Protector

- Louis Weisner \& Lester Hill
- U.S. patent number 1845947 from 1929

Applications of Linear Transformations: 2.7 \& Hill Cipher

Hill Cipher

- linear transformation of the digitized alphabet
- A.[uncoded message] = [coded message]
$A[$ col1=start of message \ldots coln=end of message $]$
- mechanical device: 6×6 matrix
- method is vulnerable to those that intercept enough vector correspondences (uncoded and coded) because of its linearity.
- final project idea: linear methods of cracking the cipher
- more powerful computers - RSA cryptosystem
- Maple

For the Hill cipher
a) $A_{n \times n}$ [original message $]_{n \times p}=[\text { coded message }]_{n \times p}$
b) to decode, we apply an invertible matrix to the coded message and read the message along the rows
c) the method is vulnerable to those that intercept enough coded/decoded vector correspondences because of its linearity
d) all of the above
e) two of the above

Image Credit: 1932 Patent Application 1,845,947 https://patents.google.çom/patent/US1845947A/en

