What do you see when you look at this matrix?
$\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]$

- intersection of the rows for concurrent solutions of systems of equations
- mixing of the columns in vector equations for to check span and linear independence
- arrays as stand alone entities with their own algebra like associativity but not commutativity.
elementary row operations are matrix multiplications on the left $E A$.
function perspectives in 1.8, 1.9, 2.7
arrays transform objects or space: A linear transformation T

1. $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$
2. $T(c \vec{x})=c T(\vec{x})$
function perspectives in 1.8, 1.9, 2.7
arrays transform objects or space: A linear transformation T

$$
\begin{aligned}
& \text { 1. } T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y}) \\
& \text { 2. } T(c \vec{x})=c T(\vec{x})
\end{aligned}
$$

left multiplication: Even though multiplication is not commutative, what makes it so useful is that linear transformations function as (left) matrix multiplication.
function perspectives in 1.8, 1.9, 2.7
arrays transform objects or space: A linear transformation T

$$
\begin{aligned}
& \text { 1. } T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y}) \\
& \text { 2. } T(c \vec{x})=c T(\vec{x})
\end{aligned}
$$

left multiplication: Even though multiplication is not commutative, what makes it so useful is that linear transformations function as (left) matrix multiplication.

- Hill cipher acts on the left of the code as multiplication by the coding matrix
- Computer graphics
function perspectives in 1.8, 1.9, 2.7
arrays transform objects or space: A linear transformation T

$$
\begin{aligned}
& \text { 1. } T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y}) \\
& \text { 2. } T(c \vec{x})=c T(\vec{x})
\end{aligned}
$$

left multiplication: Even though multiplication is not commutative, what makes it so useful is that linear transformations function as (left) matrix multiplication.

- Hill cipher acts on the left of the code as multiplication by the coding matrix
- Computer graphics
- A invertible transforms in ways that can be undone, without a loss of information
function perspectives in 1.8, 1.9, 2.7
arrays transform objects or space: A linear transformation T

$$
\begin{aligned}
& \text { 1. } T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y}) \\
& \text { 2. } T(c \vec{x})=c T(\vec{x})
\end{aligned}
$$

left multiplication: Even though multiplication is not commutative, what makes it so useful is that linear transformations function as (left) matrix multiplication.

- Hill cipher acts on the left of the code as multiplication by the coding matrix
- Computer graphics
- A invertible transforms in ways that can be undone, without a loss of information
- A not invertible like $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ via $T(\vec{x})=A \vec{x}$ where

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] . \\
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=}
\end{aligned}
$$

smushes objects and spaces and is not recoverable

