

<u>SUBSPACE, THE [O, cv & u+v] FRONTIER</u>

Star Trek TM and © Paramount and CBS

nonempty set of vectors on which we can do + and scalar mult:

- $\vec{v}_1 + \vec{v}_2$ is in the space whenever the individual vectors are
- $c\vec{v}$ is in the space whenever \vec{v} is and c is a real scalar

$$t\begin{bmatrix}1\\1\end{bmatrix}$$
 versus $t\begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}1\\0\end{bmatrix}$

nonempty set of vectors on which we can do + and scalar mult:

- $\vec{v}_1 + \vec{v}_2$ is in the space whenever the individual vectors are
- $c\vec{v}$ is in the space whenever \vec{v} is and c is a real scalar

$$t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 versus $t \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

c = 0 tells us $\vec{0}$ is in the subspace

nonempty set of vectors on which we can do + and scalar mult:

- $\vec{v}_1 + \vec{v}_2$ is in the space whenever the individual vectors are
- $c\vec{v}$ is in the space whenever \vec{v} is and c is a real scalar

$$t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 versus $t \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

c = 0 tells us $\vec{0}$ is in the subspace What are the subspaces of \mathbb{R}^2 ?

- **0**
- line through $\vec{0}$
- \mathbb{R}^2

nonempty set of vectors on which we can do + and scalar mult:

- $\vec{v}_1 + \vec{v}_2$ is in the space whenever the individual vectors are
- $c\vec{v}$ is in the space whenever \vec{v} is and c is a real scalar

$$t\begin{bmatrix}1\\1\end{bmatrix}$$
 versus $t\begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}1\\0\end{bmatrix}$

c = 0 tells us $\vec{0}$ is in the subspace What are the subspaces of \mathbb{R}^2 ?

- Õ
- line through $\vec{0}$
- \mathbb{R}^2

What are the subspaces of \mathbb{R}^3 ?

nonempty set of vectors on which we can do + and scalar mult:

- $\vec{v}_1 + \vec{v}_2$ is in the space whenever the individual vectors are
- $c\vec{v}$ is in the space whenever \vec{v} is and c is a real scalar

$$t\begin{bmatrix}1\\1\end{bmatrix}$$
 versus $t\begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}1\\0\end{bmatrix}$

c = 0 tells us $\vec{0}$ is in the subspace What are the subspaces of \mathbb{R}^2 ?

- Õ
- line through 0
- \mathbb{R}^2

What are the subspaces of \mathbb{R}^3 ?

- Õ
- line through $\vec{0}$
- plane through 0
- R³

Basis for a Subspace

• a linearly independent spanning set like $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\}$ or $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\}$ but not $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\}$

Basis for a Subspace

• a linearly independent spanning set

$$\operatorname{ike}\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\} \operatorname{or}\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\} \operatorname{but}\operatorname{not}\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\}$$

- $\begin{vmatrix} 1 & 4 & 7 & 0 \\ 2 & 5 & 8 & 0 \\ 3 & 6 & 9 & 0 \end{vmatrix} \rightarrow \begin{vmatrix} 0 & 4 & 7 & 0 \\ 0 & 3 & -6 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}$ missing a pivot for z
- span of a set of vectors is a subspace
- dimension

Star Trek TM and © Paramount and CBS

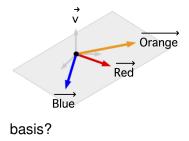
Difference Between a Basis and the Subspace Itself

• subspace is generated by the basis via all linear combinations, i.e. the span basis: $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\}$ subspace: $s \begin{bmatrix} 1\\2\\3 \end{bmatrix} + t \begin{bmatrix} 4\\5\\6 \end{bmatrix}$

Difference Between a Basis and the Subspace Itself

• subspace is generated by the basis via all linear combinations, i.e. the span basis: $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\}$ subspace: $s \begin{bmatrix} 1\\2\\3 \end{bmatrix} + t \begin{bmatrix} 4\\5\\6 \end{bmatrix}$

exclusive club xy0-plane in ℝ³



- column space of A: span of the columns of A
- null space of *A* : set of solutions to $A\vec{x} = \vec{0}$

Two Special Subspaces Related to a Matrix • column space of *A*: span of the columns of *A* • null space of *A* : set of solutions to $A\vec{x} = \vec{0}$ $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 1 \end{bmatrix}$ pivot columns basis of the column space $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 1 \end{bmatrix} \xrightarrow{r'_2 = -r_1 + r_2} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & -1 & -3 \end{bmatrix}$ **Two Special Subspaces Related to a Matrix** • column space of *A*: span of the columns of *A* • null space of *A* : set of solutions to $A\vec{x} = \vec{0}$ $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 1 \end{bmatrix}$ pivot columns basis of the column space $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 1 \end{bmatrix}$ pivot columns basis of the column space $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 1 \end{bmatrix}$ $\xrightarrow{r'_2 = -r_1 + r_2}$ $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & -1 & -3 \end{bmatrix}$ $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right\}$ geometry of entire column space?

Two Special Subspaces Related to a Matrix column space of A: span of the columns of A • null space of A : set of solutions to $A\vec{x} = \vec{0}$ $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 1 \end{bmatrix}$ pivot columns basis of the column space $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 1 \end{bmatrix} \xrightarrow{r'_2 = -r_1 + r_2} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & -1 & -3 \end{bmatrix} \quad \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right\}$ geometry of entire column space? all of \mathbb{R}^2 null space write $A\vec{x} = \vec{0}$ solutions by parameterizing $\begin{bmatrix} 1 & 2 & 3 & 4 & 0 \\ 1 & 2 & 2 & 1 & 0 \end{bmatrix} \xrightarrow{r'_2 = -r_1 + r_2} \begin{bmatrix} 1 & 2 & 3 & 4 & 0 \\ 0 & 0 & (1) & -3 & 0 \end{bmatrix}$

Two Special Subspaces Related to a Matrix • column space of A: span of the columns of A • null space of A : set of solutions to $A\vec{x} = \vec{0}$ $A = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 1 \end{vmatrix}$ pivot columns basis of the column space $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 1 \end{bmatrix} \xrightarrow{r'_2 = -r_1 + r_2} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & -1 & -3 \end{bmatrix} \quad \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right\}$ geometry of entire column space? all of \mathbb{R}^2 null space write $A\vec{x} = \vec{0}$ solutions by parameterizing $\begin{bmatrix} 1 & 2 & 3 & 4 & 0 \\ 1 & 2 & 2 & 1 & 0 \end{bmatrix} \xrightarrow{r'_2 = -r_1 + r_2} \begin{bmatrix} 1 & 2 & 3 & 4 & 0 \\ 0 & 0 & (1) & -3 & 0 \end{bmatrix}$ back substitution $x_2 = s$, $x_4 = t$, row 2: [0 0 -1 -3 0] $x_3 = -3t$, row 1: $x_1 = -2x_2 - 3x_3 - 4x_4 = -2s - 3(-3t) - 4t = -2s + 5t$

Two Special Subspaces Related to a Matrix • column space of A: span of the columns of A • null space of A : set of solutions to $A\vec{x} = \vec{0}$ $A = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 1 \end{vmatrix}$ pivot columns basis of the column space $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 1 \end{bmatrix} \xrightarrow{r'_2 = -r_1 + r_2} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & -1 & -3 \end{bmatrix} \quad \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right\}$ geometry of entire column space? all of \mathbb{R}^2 null space write $A\vec{x} = \vec{0}$ solutions by parameterizing $\begin{bmatrix} 1 & 2 & 3 & 4 & 0 \\ 1 & 2 & 2 & 1 & 0 \end{bmatrix} \xrightarrow{r'_2 = -r_1 + r_2} \begin{bmatrix} 1 & 2 & 3 & 4 & 0 \\ 0 & 0 & (1) & -3 & 0 \end{bmatrix}$ back substitution $x_2 = s$, $x_4 = t$, row 2: [0 0 -1 -3 0] $x_3 = -3t$, row 1: $x_1 = -2x_2 - 3x_3 - 4x_4 = -2s - 3(-3t) - 4t = -2s + 5t$ $s \begin{vmatrix} -2 \\ 1 \\ 0 \\ -3 \end{vmatrix} + t \begin{vmatrix} 5 \\ 0 \\ -3 \\ 1 \end{vmatrix} \text{ basis: } \left\{ \begin{vmatrix} -2 \\ 1 \\ 0 \\ -3 \\ 1 \end{vmatrix}, \begin{vmatrix} 5 \\ 0 \\ -3 \\ 1 \\ 1 \end{vmatrix} \right\} \text{ geo? plane in } \mathbb{R}^4$

- column space of A: span of the columns of A
- null space of A: set of solutions to $A\vec{x} = \vec{0}$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- a) What is a basis for the column space of A?
- b) What is the column space of A?
- c) What is the geometry of the column space of A?

- column space of A: span of the columns of A
- null space of A: set of solutions to $A\vec{x} = \vec{0}$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

a) What is a basis for the column space? $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$

b) What is the column space of A?

$$\begin{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \end{bmatrix}$$
$$s \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + u \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

c) What is the geometry of the column space of A? infinite volume in ℝ³ is all of ℝ³

2.8

- column space of A: span of the columns of A
- null space of A: set of solutions to $A\vec{x} = \vec{0}$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

d) What is the nullspace of A?

- e) What is a basis for the nullspace of A?
- f) What is the geometry of the nullspace of A?

- column space of A: span of the columns of A
- null space of A: set of solutions to $A\vec{x} = \vec{0}$
- d) What is the nullspace of A? Augment with 0 and

parameterize $[A0] = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & (1) & 1 & 0 & 0 \\ 0 & 0 & 0 & (1) & 0 \end{bmatrix}$ x_3 is free so $x_3 = t$. row 3: $[0 \ 0 \ 0 \ 1 \ 0] x_4 = 0$ row 2: [0 1 1 0 0] $x_2 + x_3 = 0$ so $x_2 = -x_3 = -t$ row 1: [1 0 0 1 0] $x_1 + x_4 = 0$ so $x_1 = -x_4 = -0 = 0$ nullspace is $\begin{bmatrix} 0\\-t\\t\\ 0 \end{bmatrix} = t \begin{vmatrix} 0\\-1\\1\\0 \end{vmatrix}$ e) basis is $\left\{ \begin{vmatrix} 0\\-1\\1\\0 \end{vmatrix} \right\}$ What is the geometry of the nullspace of A? line in \mathbb{R}^4

Applications

LIVING IN A NULLSPACE BY NULL THX FOR LUNCH TODAY MY MONEY GETS FOR A FRIEND IS LIKE PPED TO ZERO LIVING IN A NULLISPAC \odot 5) YOU MEAN EVERYDAY?

- A directions we can go based on thrusters
- A rate of return on investments
- A room illumination
- A set of map directions (vectors) at entrance to forest

WWW.BITSTRIPS.COM

Null Space and Column Space Which of the following statements about are true about the

nullspace (or null space) and column space of $M = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$.

Note that *M* is row equivalent to $\begin{bmatrix} 1 & 4 \\ 0 & -3 \\ 0 & 0 \end{bmatrix}$ and when *M* is

augmented with a generic vector and reduced to Gaussian, the last row becomes $\begin{bmatrix} 0 & 0 & b_1 - 2b_2 + b_3 \end{bmatrix}$

- a) the column space is the plane $b_1 2b_2 + b_3 = 0$ in \mathbb{R}^3
- b) the column space is the plane $s \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + t \begin{bmatrix} 4 \\ 5 \\ -1 \end{bmatrix}$ in \mathbb{R}^3
- c) the nullspace is $\vec{0}$ in \mathbb{R}^2
- d) all of the above
- e) two of the above

Maple's Null Space and Column Space Using with(LinearAlgebra): with(plots): M:=Matrix([[1,4],[2,5],[3,6]]); ColumnSpace(M); Maple outputs the equivalent of $\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$. Are these vectors even in the column space? We can check $b_1 - 2b_2 + b_3 = 0$

Maple's Null Space and Column Space Using with (Linear Algebra): with (plots): M:=Matrix([[1,4],[2,5],[3,6]]); ColumnSpace(M); Maple outputs the equivalent of $\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$. Are these vectors even in the column space? We can check $b_1 - 2b_2 + b_3 = 0$ Yes! For $\begin{bmatrix} 1\\0\\-1 \end{bmatrix} b_1 - 2b_2 + b_3 = 1 - 2(0) - 1 = 0$ For $\begin{vmatrix} 0 \\ 1 \\ 2 \end{vmatrix}$ $b_1 - 2b_2 + b_3 = 0 - 2(1) + 2 = 0$

basis with 1s and 0s in the first coordinates. Spans the same space, the same plane in \mathbb{R}^3 . It's a basis, not entire space.

通 と く ヨ と く ヨ と …

Maple's Null Space and Column Space Using with (Linear Algebra): with (plots): M:=Matrix([[1,4],[2,5],[3,6]]); ColumnSpace(M); Maple outputs the equivalent of $\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$. Are these vectors even in the column space? We can check $b_1 - 2b_2 + b_3 = 0$ Yes! For $\begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix} b_1 - 2b_2 + b_3 = 1 - 2(0) - 1 = 0$ For $\begin{vmatrix} 0 \\ 1 \\ 2 \end{vmatrix}$ $b_1 - 2b_2 + b_3 = 0 - 2(1) + 2 = 0$ basis with 1s and 0s in the first coordinates. Spans the same space, the same plane in \mathbb{R}^3 . It's a basis, not entire space. NullSpace(M); outputs \emptyset as no basis for entire nullspace $\begin{bmatrix} 0\\0 \end{bmatrix}$

Null Space of a Non-Square Matrix The null space of a non-square matrix is a subspace of

- a) \mathbb{R} number of rows
- b) Rnumber of columns

c) further work must be done to tell

[HTML] The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools I Famili, BO Palsson - Biophysical journal, 2003 - Elsevier

... between the reaction rate vectors, v, and time derivative of metabolite concentrations, dx/dt or

x'. Each two subspaces in the domain (ie, the null space and row space) and codomain (ie,

the left null space and column space) form orthogonal pairs with one another ...

☆ 99 Cited by 103 Related articles All 15 versions

Closed-loop subspace identification using the parity space

J Wang, SJ Qin - Automatica, 2006 - Elsevier

... It is shown that the column space of the observability matrix extracted from SOPIM is equivalent to that from SIMPCA-Wc... (9), we have (11) $\lim N \to \infty 1 N (\Gamma f \perp) T [I - H f] Z f Z p T = 0$. Therefore, $(\Gamma f \perp) T [I - H f]$ is in the left null space of lim N $\rightarrow \infty (1/N) Z f Z p T$. If we ... ☆ 99 Cited by 92 Related articles All 6 versions

Production frontiers with cross-sectional and time-series variation in efficiency levels

C Cornwell, P Schmidt, RC Sickles - Journal of econometrics, 1990 - Elsevier

... Let PL, = Q(Q'Q>-IQ' be the projection onto the column space of Q and ML, = I - Pp be the projection onto the null space of Q. We derive three different estimators for (2.3), each of which is a straight- forward extension of an established procedure for the standard panel data ...

☆ 99 Cited by 1352 Related articles All 13 versions >>>

Degrees of freedom of the MIMO Y channel: Signal space alignment for network codina

N Lee, JB Lim, J Chun - IEEE Transactions on Information ..., 2010 - ieeexplore.ieee.org ... designed to lie in the null space of channel matrix , ie ... Since all users have antennas and the relay equips antennas, there exists a -dimensional intersection subspace consti- tuted by the column space of channel matrices for each user pair. Let denote the ...

☆ 99 Cited by 216 Related articles All 5 versions

Google Search for null space and column space

Math 2240: Introduction to Linear Algebra