2.9 Dimension and Rank-Nullity Theorem <u>SUBSPACE, THE [0, cv & u+v] FRONTIER</u>

Star Trek TMand © Paramount and CBS

SUBSPACE, THE [O, cv & u+v] FRONTIER BASIS, I.i. + span, efficient represent COLUMN SPACE, ASPAN OF THE COLUMNS NULL SPACE, ASOLUTIONS TO Ax=0

2.9

Basis Review

- A basis for a subspace is a set of vectors { v
 ₁, v
 ₂, ..., v
 _n} that is a spanning set for the subspace and is linearly independent
- Any vector can be uniquely written as a linear combination of the vectors in the basis

$$\begin{array}{c} \text{Example:} \left\{ \begin{bmatrix} 1\\3\\2 \end{bmatrix}, \begin{bmatrix} -2\\-6\\-1 \end{bmatrix}, \begin{bmatrix} -1\\-5\\1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^{3} \\ \begin{bmatrix} 1 & -2 & -1 & b_{1} \\ 3 & -6 & -5 & b_{2} \\ 2 & -1 & 1 & b_{3} \end{bmatrix} \xrightarrow{\text{Gaussian}} \begin{bmatrix} 1 & -2 & -1 & b_{1} \\ 0 & 3 & 3 & -2b_{1} + b_{3} \\ 0 & 0 & -2 & -3b_{1} + b_{2} \end{bmatrix} \\ \begin{bmatrix} 1 & -2 & -1 & 0 \\ 3 & -6 & -5 & 0 \\ 2 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{\text{Gaussian}} \begin{bmatrix} 1 & -2 & -1 & 0 \\ 0 & 3 & 3 & -2b_{1} + b_{2} \\ 0 & 0 & -2 & -3b_{1} + b_{2} \end{bmatrix}$$

Every basis has exactly the same number of vectors. The number is the dimension.

Change of Basis Coordinates

https://www.hq.nasa.gov/alsj/imu-2.jpg

프 🕨 🗉 프

Rank and Nullity

SUBSPACE, THE [O, cv & u+v] FRONTIER BASIS, I.i. + span, efficient represent COLUMN SPACE, ASPAN OF THE COLUMNS NULL SPACE, ASOLUTIONS TO Ax=0

rank of *A* is the dimension of the column space

nullity of A is the dimension of the null space

What is the rank and nullity of
$$A = \begin{bmatrix} 3 & -1 & 7 & -6 \\ 4 & -1 & 9 & -7 \\ -2 & 1 & -5 & 5 \end{bmatrix} \xrightarrow{r'_2 = -\frac{4}{3}r_1 + r_2} \begin{bmatrix} 3 & -1 & 7 & -6 \\ 4 & -1 & 9 & -7 \\ r'_3 = \frac{2}{3}r_1 + r_2 \\ r'_3 = \frac{2}{3}r_1 + r_2 \\ r'_3 = -r_2 + r_3 \\ r'_3 = -r_3 + r_3 \\ r'_3 = -r_3 + r_3 \\ r'_3 = -r_3 + r_3 + r_3 \\ r'_3 = -r_3 + r_3 + r_3 \\ r'_3 = -r_3 + r_3 + r_3 + r_3 \\ r'_3 = -r_3 + r_3 + r_3 + r_3 + r_3 + r_3 \\ r'_3 = -r_3 + r_3 + r_3$$

æ

프 🖌 🛪 프 🛌

What is the rank and nullity of
$$A = \begin{bmatrix} 3 & -1 & 7 & -6 \\ 4 & -1 & 9 & -7 \\ -2 & 1 & -5 & 5 \end{bmatrix}$$
?

$$\begin{bmatrix} 3 & -1 & 7 & -6 \\ 4 & -1 & 9 & -7 \\ -2 & 1 & -5 & 5 \end{bmatrix} \xrightarrow{r'_2 = -\frac{4}{3}r_1 + r_2}_{r'_3 = \frac{2}{3}r_1 + r_2} \begin{bmatrix} 3 & -1 & 7 & -6 \\ 0 & \frac{1}{3} & -\frac{1}{3} & 1 \\ 0 & \frac{1}{3} & -\frac{1}{3} & 1 \end{bmatrix}$$

$$\xrightarrow{r'_3 = -r_2 + r_3}$$

$$\begin{bmatrix} 3 & -1 & 7 & -6 \\ 4 & -1 & 9 & -7 \\ -2 & 1 & -5 & 5 \end{bmatrix} \xrightarrow{Gaussian} \begin{bmatrix} 3 & -1 & 7 & -6 \\ 0 & \frac{1}{3} & -\frac{1}{3} & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
basis for column space $\left\{ \begin{bmatrix} 3 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} \right\}$ rank=2

$$\begin{bmatrix} 3 & -1 & 7 & -6 & 0 \\ 4 & -1 & 9 & -7 & 0 \\ -2 & 1 & -5 & 5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & = \\ 3 & -1 & 7 & -6 & 0 \\ 0 & \frac{1}{3} & -\frac{1}{3} & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

.

프 에 에 프 어 - -

2

(문) 문

$$\begin{array}{c} x_{1} \quad x_{2} \quad x_{3} \quad x_{4} = \\ x_{1} \quad x_{2} \quad x_{3} \quad x_{4} = \\ x_{1} \quad x_{2} \quad x_{3} \quad x_{4} = \\ x_{1} \quad x_{2} \quad x_{3} \quad x_{4} = \\ x_{1} \quad x_{2} \quad x_{3} \quad x_{4} = \\ x_{1} \quad x_{2} \quad x_{3} \quad x_{4} = \\ x_{1} \quad x_{2} \quad x_{3} \quad x_{4} = \\ x_{1} \quad x_{2} \quad x_{3} \quad x_{4} = \\ x_{1} \quad x_{2} \quad x_{3} \quad x_{4} = \\ x_{2} \quad x_{3} \quad x_{4} = \\ x_{3} \quad x_{3} \quad x_{4} = \\ x_{1} \quad x_{2} \quad x_{3} \quad x_{4} = \\ x_{2} \quad x_{3} \quad x_{4} = \\ x_{3} \quad x_{4} = \\ x_{4} \quad x_{4} \quad x_{5} \quad x_{5} \\ x_{1} \quad x_{2} \quad x_{5} \quad x_{1} = \\ x_{2} \quad x_{3} \quad x_{4} = \\ x_{2} \quad x_{3} \quad x_{4} = \\ x_{4} \quad x_{2} \quad x_{3} \quad x_{4} = \\ x_{4} \quad x_{2} \quad x_{3} \quad x_{4} = \\ x_{4} \quad x_{2} \quad x_{3} \quad x_{4} = \\ x_{4} \quad x_{4} \quad x_{4} \quad x_{4} = \\ x_{4} \quad x_{4} \quad x_{4} \quad x_{4} = \\ x_{4} \quad x_{4} \quad x_{4} \quad x_{4} \quad x_{4} = \\ x_{4} \quad x_{5} \quad x_{1} \quad x_{2} \quad x_{5} \quad x_{1} \\ x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{1} \quad x_{2} \quad x_{5} \quad x_{1} \\ x_{2} \quad x_{3} \quad x_{4} \quad x$$

Rank-Nullity Theorem

If a matrix A has n columns then rank(A) + nullity(A) = n

э

- ⊒ →

-< ≣ > <

Rank-Nullity Theorem

If a matrix A has n columns then rank(A) + nullity(A) = n

Suppose *A* is a 3×5 matrix with nullity 4. Give a geometric description of the column space of *A*.

Rank-Nullity Theorem

If a matrix A has n columns then rank(A) + nullity(A) = n

Suppose *A* is a 3×5 matrix with nullity 4. Give a geometric description of the column space of *A*.

The column space of A is a 1 dimensional subspace of ℝ³, so it is a line through the origin.

Rank-Nullity Theorem Visualized for Projection

Rank is the number of vectors that are left as basis vectors and the nullity is the number that are squashed.

Invertible Matrix Theorem

Let *A* be a square $n \times n$ matrix. TFAE

- A is an invertible matrix.
- A is row equivalent to the $n \times n$ identity matrix
- A has n pivot positions
- The equation $A\vec{x} = \vec{0}$ has only the trivial solution
- The columns of A form a linearly independent set
- The equation $A\vec{x} = \vec{b}$ has a unique solution for each \vec{b} in \mathbb{R}^n
- The columns of A span \mathbb{R}^n
- A^T is invertible
- The column space of A is \mathbb{R}^n
- rank(A) = n
- The null space of A is $\{\vec{0}\}$
- $\operatorname{nullity}(A) = 0$

Apply the Rank-Nullity Theorem

Apply the rank-nullity theorem to $\begin{bmatrix} 1 & -2 & 0 & 4 \\ 3 & -5 & 1 & 0 \\ -1 & 1 & -1 & 8 \end{bmatrix}$

- a) rank + nullity = 3 + 0 = 3
- b) rank + nullity = 2 + 1 = 3
- c) rank + nullity = 3 + 1 = 4
- d) rank + nullity = 2 + 2 = 4
- e) other

Apply the Rank-Nullity Theorem

$$\begin{bmatrix} 1 & -2 & 0 & 4 \\ 3 & -5 & 1 & 0 \\ -1 & 1 & -1 & 8 \end{bmatrix} \xrightarrow{r'_2 = -3r_1 + r_2}_{r'_3 = r_1 + r_3} \begin{bmatrix} 1 & -2 & 0 & 4 \\ 0 & 1 & 1 & -12 \\ 0 & -1 & -1 & 12 \end{bmatrix}$$
$$\xrightarrow{r'_3 = r_2 + r_3} \begin{bmatrix} 1 & -2 & 0 & 4 \\ 0 & 1 & 1 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

∃ ∽ へ (~

Apply the Rank-Nullity Theorem

$$\begin{bmatrix} 1 & -2 & 0 & 4 \\ 3 & -5 & 1 & 0 \\ -1 & 1 & -1 & 8 \end{bmatrix} \xrightarrow{r'_{2} = -3r_{1} + r_{2}} \begin{bmatrix} 1 & -2 & 0 & 4 \\ 0 & 1 & 1 & -12 \\ 0 & -1 & -1 & 12 \end{bmatrix}$$

$$\xrightarrow{r'_{3} = r_{2} + r_{3}} \begin{bmatrix} 1 & -2 & 0 & 4 \\ 0 & 1 & 1 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
basis for the column space is
$$\left\{ \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ -5 \\ 1 \end{bmatrix} \right\}$$
so rank = 2

2.9

★ Ξ → ★ Ξ → ...

∃ ∽ へ (~

Apply the Rank-Nullity Theorem $\begin{bmatrix} 1 & -2 & 0 & 4 \\ 3 & -5 & 1 & 0 \\ -1 & 1 & -1 & 8 \end{bmatrix} \xrightarrow{Gaussian} \begin{bmatrix} 1 & -2 & 0 & 4 \\ 0 & 1 & 1 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ basis for the column space is $\left\{ \begin{bmatrix} 1\\3\\-1 \end{bmatrix}, \begin{bmatrix} -2\\-5\\1 \end{bmatrix} \right\}$ so rank = 2 $\begin{vmatrix} 1 & -2 & 0 & 4 & 0 \\ 3 & -5 & 1 & 0 & 0 \\ -1 & 1 & -1 & 8 & 0 \end{vmatrix} \xrightarrow{Gaussian} \begin{bmatrix} 1 & -2 & 0 & 4 & 0 \\ 0 & 1 & 1 & -12 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{vmatrix}$ nullspace $A\vec{x} = 0$ is $x_3 = s, x_4 = t, x_2 = -s + 12t, x_1 = 2(-s + 12t) - 4t = -2s + 20t$ $\begin{bmatrix} -2s+20t\\ -s+12t\\ s\\ t \end{bmatrix} = s \begin{bmatrix} -2\\ -1\\ 1\\ 0\\ 1 \end{bmatrix} + t \begin{bmatrix} 20\\ 12\\ 0\\ 1\\ 1 \end{bmatrix} \text{ with basis } \left\{ \begin{bmatrix} -2\\ -1\\ 1\\ 0\\ 1 \end{bmatrix}, \begin{bmatrix} 20\\ 12\\ 0\\ 1 \end{bmatrix} \right\}$ and nullity 2 Maple

Don't Make this Column Space Mistake!

$$\begin{cases} 1 & -2 & 0 & 4 \\ 3 & -5 & 1 & 0 \\ -1 & 1 & -1 & 8 \end{cases} \xrightarrow{Gaussian} \begin{bmatrix} 1 & -2 & 0 & 4 \\ 0 & 1 & 1 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

basis
$$\begin{cases} \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ -5 \\ 1 \end{bmatrix} \end{cases} \text{ or } \begin{cases} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \end{cases} \text{ or others}$$

$$\begin{cases} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \end{cases} \text{ is NOT a basis for the column space}$$

vectors in the column space satisfy $-2b_1 + b_2 + b_3 = 0$ from the [0 0 0 0 b3-2b1+b2] row

none of the reduced matrix vectors satisfy this, like column 4: $-2b_1 + b_2 + b_3 = -2(4) + (-12) + (0) \neq 0$ but all the original matrix columns plus Maple's column space basis vectors do.

apply nullspace def:
$$A^{T}(\vec{y} - A \begin{bmatrix} b \\ m \end{bmatrix}) = \vec{0}$$
 so $A^{T}\vec{y} = (A^{T}A) \begin{bmatrix} b \\ m \end{bmatrix}$
Also, if $(A^{T}A)$ is invertible then $\begin{bmatrix} b \\ m \end{bmatrix} = (A^{T}A)^{-1}A^{T}\vec{y}$ lets us solve for the best fit line!

2.9

Error-correcting Codes

A generating matrix for a linear code, *G*, takes in *k*-bit string of information, \vec{x} , and outputs an *n*-bit error-protected blocks by applying the transformation $T(\vec{x}) = G\vec{x}$.

The column-space of G is the set of all codewords

A check matrix for a linear code is a matrix *H* with the property that $H\vec{z} = \vec{0}$ if and only if \vec{z} is a codeword.

The null space of H is the set of all codewords

https://phys.org/news/2012-02-error-correcting-codes-fastest-transmission.html

http://www.math.toronto.edu/afenyes/writing/error-correction%20(optober%202015).pdf = 🗤 🔿