3.1, 3.2, and 3.3 Determinants

a) invertibility of a 2×2 matrix
b) determinant 1 (or -1) coding matrix with integer entries will ensure we don't pick up fractions in the decoding matrix
c) both of the above

$2 \times 2,3 \times 3$ and 4×4 Determinants

- Maple

$2 \times 2,3 \times 3$ and 4×4 Determinants

- Maple
$\bullet\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right| \xrightarrow{\text { first } 2 \text { columns } / 6 \text { diagonals }} \begin{array}{lllll}a & b & c & a & b \\ d & e & f & d & e \\ g & h & i & g & h\end{array}$
3 main diagonals: $a \cdot e \cdot i+b \cdot f \cdot g+c \cdot d \cdot h$ minus 3 off diagonals: $-c \cdot e \cdot g-a \cdot f \cdot h-b \cdot d \cdot i$

$2 \times 2,3 \times 3$ and 4×4 Determinants

- Maple
$\bullet\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right| \xrightarrow{\text { first } 2 \text { columns } / 6 \text { diagonals }} \begin{array}{lllll}a & b & c & a & b \\ d & e & f & d & e \\ g & h & i & g & h\end{array}$
3 main diagonals: $a \cdot e \cdot i+b \cdot f \cdot g+c \cdot d \cdot h$ minus 3 off diagonals: $-c \cdot e \cdot g-a \cdot f \cdot h-b \cdot d \cdot i$
- 2×2 has 2 terms, 3×3 has 6 terms, 4×4 has 24 terms. Do you see a pattern?

1683 Takakazu Shinsuke Seki computed $2 \times 2,3 \times 3,4 \times 4$ and 5×5 determinants

Cofactor $C_{i j}$ or Laplace Expansion of Determinant

 $\sum_{1}^{n} a_{i j}(-1)^{i+j} \mid$ matrix obtained by eliminating row i and column $j \mid$where we have fixed i or j to expand along

Cofactor $C_{i j}$ or Laplace Expansion of Determinant

$\sum_{1}^{n} a_{i j}(-1)^{i+j} \mid$ matrix obtained by eliminating row i and column $j \mid$
where we have fixed i or j to expand along
$\left|\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right|=\sum_{1}^{n} a_{2 j} C_{2 j}=\sum_{1}^{n} a_{2 j}(-1)^{2+j}$ Minor $_{2 j}$

Cofactor $C_{i j}$ or Laplace Expansion of Determinant $\sum_{1}^{n} a_{i j}(-1)^{i+j} \mid$ matrix obtained by eliminating row i and column $j \mid$ where we have fixed i or j to expand along

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right|=\sum_{1}^{n} a_{2 j} C_{2 j}=\sum_{1}^{n} a_{2 j}(-1)^{2+j} \text { Minor }_{2 j} \\
& \left.\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}|\quad| \begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}|\quad| \begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array} \right\rvert\,
\end{aligned}
$$

Cofactor $C_{i j}$ or Laplace Expansion of Determinant $\sum_{1}^{n} a_{i j}(-1)^{i+j} \mid$ matrix obtained by eliminating row i and column $j \mid$ where we have fixed i or j to expand along

Cofactor $C_{i j}$ or Laplace Expansion of Determinant $\sum_{1}^{n} a_{j j}(-1)^{i+j}$ matrix obtained by eliminating row i and column $j \mid$ where we have fixed i or j to expand along

Taking Advantage of Os

By hand, use the cofactor/Laplace expansion as directed
$\left|\begin{array}{llllc}5 & 2 & 0 & 0 & -2 \\ 0 & 1 & 4 & 3 & 2 \\ 0 & 0 & 2 & 6 & 3 \\ 0 & 0 & 3 & 4 & 1 \\ 0 & 0 & 0 & 0 & 2\end{array}\right|$

Step 1: first expand down the first column to take advantage of the 0s. You'll have one nonzero term.
Step 2: then down the 1st column of the resulting 4×4 matrix Step 3: then along the 3 rd row of the 3×3 matrix:
a) 0
b) -10
c) 100
d) -100
e) other

Algebraic Properties of Determinant

1812 Cauchy explored determinants, minors and cofactors and proved $|A B|=|A||B|$

Algebraic Properties of Determinant

1812 Cauchy explored determinants, minors and cofactors and proved $|A B|=|A||B|$

Compute the matrices and their determinants and compare. Does the determinant change? If so, how is it related to the original?
a) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$ versus determinant of matrix after $r_{2}^{\prime}=-3 r_{1}+r_{2}$

Algebraic Properties of Determinant

1812 Cauchy explored determinants, minors and cofactors and proved $|A B|=|A||B|$

Compute the matrices and their determinants and compare. Does the determinant change? If so, how is it related to the original?
a) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$ versus determinant of matrix after $r_{2}^{\prime}=-3 r_{1}+r_{2}$
b) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$ versus determinant of matrix after $r_{1} \leftrightarrow r_{2}$

Algebraic Properties of Determinant

1812 Cauchy explored determinants, minors and cofactors and proved $|A B|=|A||B|$

Compute the matrices and their determinants and compare. Does the determinant change? If so, how is it related to the original?
a) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$ versus determinant of matrix after $r_{2}^{\prime}=-3 r_{1}+r_{2}$
b) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$ versus determinant of matrix after $r_{1} \leftrightarrow r_{2}$
c) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$ versus determinant of the matrix after $r_{2}^{\prime}=c r_{2}, c \neq 0$

Algebraic Properties of Determinant

1812 Cauchy explored determinants, minors and cofactors and proved $|A B|=|A||B|$

Compute the matrices and their determinants and compare. Does the determinant change? If so, how is it related to the original?
a) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$ versus determinant of matrix after $r_{2}^{\prime}=-3 r_{1}+r_{2}$
b) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$ versus determinant of matrix after $r_{1} \leftrightarrow r_{2}$
c) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$ versus determinant of the matrix after $r_{2}^{\prime}=c r_{2}, c \neq 0$
d) $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$ versus determinant of $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|^{\top}$

Image 1: Modeling of Hot-Mix Asphalt Compaction: A Thermodynamics-Based Compressible Viscoelastic Model
[FHWA-HRT-10-065], rest of images made using VLA program by Herman and Pepe Visual Linear Algebra

- $r_{j}^{\prime}=c r_{i}+r_{j} \quad$ shear $\left[\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right]$.object same determinant
- $r_{i} \leftrightarrow r_{j} \quad$ reflect
- $r_{j}^{\prime}=c r_{j} \quad$ scale $\left[\begin{array}{ll}c & 0 \\ 0 & 1\end{array}\right]$.object scales determinant
- transpose preserves determinant

Determinant of Triangular Matrix and Inverse

A triangular matrix has 0s below the diagonal (such as in Gaussian to row echelon form), or Os above the diagonal:
$\left|\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10\end{array}\right|$ or $\left|\begin{array}{cccc}1 & 0 & 0 & 0 \\ 2 & 5 & 0 & 0 \\ 3 & 6 & 8 & 0 \\ 4 & 7 & 9 & 10\end{array}\right|$

By-hand, what is the determinant of a triangular matrix?

Determinant of Triangular Matrix and Inverse

A triangular matrix has 0s below the diagonal (such as in Gaussian to row echelon form), or Os above the diagonal:
$\left|\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10\end{array}\right|$ or $\left|\begin{array}{cccc}1 & 0 & 0 & 0 \\ 2 & 5 & 0 & 0 \\ 3 & 6 & 8 & 0 \\ 4 & 7 & 9 & 10\end{array}\right|$

By-hand, what is the determinant of a triangular matrix?

What is the determinant of the inverse of a matrix?

- write the inverse of $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. What is its determinant and how does it compare to the original?

Determinant of Invertible Matrices

- via matrix algebra

$$
\begin{aligned}
& A A^{-1}=I \\
& \left|A A^{-1}\right|=|I|=
\end{aligned}
$$

Determinant of Invertible Matrices

- via matrix algebra

$$
\begin{aligned}
& A A^{-1}=I \\
& \left|A A^{-1}\right|=|I|= \\
& |A|\left|A^{-1}\right|=\left|A A^{-1}\right|=1
\end{aligned}
$$

Determinant of Invertible Matrices

- via matrix algebra

$$
\begin{aligned}
& A A^{-1}=I \\
& \left|A A^{-1}\right|=|I|= \\
& |A|\left|A^{-1}\right|=\left|A A^{-1}\right|=1
\end{aligned}
$$

- via elementary row operations use Gauss-Jordan to obtain the reduced row echelon form of A. What is A row equivalent to?

Determinant of Invertible Matrices

- via matrix algebra

$$
\begin{aligned}
& A A^{-1}=I \\
& \left|A A^{-1}\right|=|I|= \\
& |A|\left|A^{-1}\right|=\left|A A^{-1}\right|=1
\end{aligned}
$$

- via elementary row operations use Gauss-Jordan to obtain the reduced row echelon form of A. What is A row equivalent to? I How could we have changed the determinant? Zeroness?
- connections: invertible matrix theorem

Determinant 0 Matrices

Suppose the determinant of matrix A is zero. How many solutions does the system $A \vec{x}=0$ have?
a) 0
b) 1
c) 2
d) ∞
e) other

The Nine Chapters on the Mathematical Art

Trivial Solution

We find that for a square coefficient matrix A, the homogeneous system $A \vec{x}=\overrightarrow{0}$, has only the trivial solution $\vec{x}=\overrightarrow{0}$. This means that
a) A has a 0 determinant
b) A has a nonzero determinant
c) This tells us nothing about the determinant

A short survey of some recent applications of determinants

 PR Vein - Linear Algebra and its Applications, 1982 - ElsevierDeterminants declined in prestige from the mid-nineteenth century onwards and are now best known for their applications in matrix theory, where they appear in a subsidiary role. However, during the last thirty years determinants have arisen independently of matrices in...
is 20 Cited by 11 Related articles All 3 versions
[воок] Determinants and their applications in mathematical physics R Vein, P Dale - 2006 - books.google.com
The last treatise on the theory of determinants, by T. Muir, revised and enlarged by WH Metzler, was published by Dover Publications Inc. in 1960. It is an unabridged and corrected republication of the edition ori-nally published by Longman, Green and Co. in 1933 and ...
\& 78 Cited by 198 Related articles All 16 versions 00
Google Scholar search of applications of determinants

Geometric Properties of Determinant 2×2

 $\left[\begin{array}{ll}4 & 2 \\ 2 & 6\end{array}\right] \operatorname{det} A=\operatorname{det} A^{T}$ so examine the rows and the unit span$$
t r_{1}+s r_{2}, 0 \leq s, t \leq 1
$$

Geometric Properties of Determinant 2×2

image made using VLA program by Herman and Pepe Visual Linear Algebra

Geometric Properties of Determinant 2×2

image made using VLA program by Herman and Pepe Visual Linear Algebra
strict Gaussian

Geometric Properties of Determinant 2×2

 $\left[\begin{array}{ll}4 & 2 \\ 2 & 6\end{array}\right] \operatorname{det} A=\operatorname{det} A^{T}$ so examine the rows and the unit span$$
t r_{1}+s r_{2}, 0 \leq s, t \leq 1 \begin{array}{llllll}
-2 & 0 & 2 & 4 & 6 & 8
\end{array}
$$

image made using VLA program by Herman and Pepe Visual Linear Algebra
strict Gaussian $r_{2}^{\prime}=-\frac{1}{2} r_{1}+r_{2}$ or equivalently the shear $\left[\begin{array}{cc}1 & 0 \\ -\frac{1}{2} & 1\end{array}\right]\left[\begin{array}{ll}4 & 2 \\ 2 & 6\end{array}\right]=\left[\begin{array}{ll}4 & 2 \\ 0 & 5\end{array}\right]$ preserves determinant

Geometric Properties of Determinant 2×2

 In general $\left[\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right]$ or $r_{2}^{\prime}=t r_{1}+r_{2}$ takes the second row to a vector that ends on the line parallel to _ through the tip of
Geometric Properties of Determinant 2×2

 In general $\left[\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right]$ or $r_{2}^{\prime}=t r_{1}+r_{2}$ takes the second row to a vector that ends on the line parallel to _ through the tip of

Geometric Properties of Determinant 2×2

 In general $\left[\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right]$ or $r_{2}^{\prime}=t r_{1}+r_{2}$ takes the second row to a vector that ends on the line parallel to _ through the tip of \qquad

images made using VLA program by Herman and Pepe Visual Linear Algebra
Note: since we are acting on the rows rather than the columns it isn't visualized as a vertical shear-it is an r_{1} shear

images made using VLA program by Herman and Pepe Visual Linear Algebra
strict Gauss-Jordan $r_{1}^{\prime}=-\frac{2}{5} r_{2}+r_{1}$ or equivalently $\left[\begin{array}{cc}1 & -\frac{2}{5} \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}4 & 2 \\ 0 & 5\end{array}\right]=\left[\begin{array}{ll}4 & 0 \\ 0 & 5\end{array}\right]$ determinant $=$

images made using VLA program by Herman and Pepe Visual Linear Algebra
strict Gauss-Jordan $r_{1}^{\prime}=-\frac{2}{5} r_{2}+r_{1}$ or equivalently

$$
\left[\begin{array}{cc}
1 & -\frac{2}{5} \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
4 & 2 \\
0 & 5
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right] \text { determinant }=\text { area }=20
$$

Strict replacements shears unit span parallelograms to rectangles with the same area. We may have had to swap rows to make this work, changing only the sign of the determinant. |determinant $\mid=$ area for 2 column vectors in a 2×2 matrix

Geometric Properties of Determinant 3×3

|determinant| =__ for 3 column vectors in a 3×3 matrix

Geometric Properties of Determinant 3×3

 |determinant $\mid=\ldots \quad$ for 3 column vectors in a 3×3 matrix
volume of unit span parallelepiped
1773 Joseph-Louis Lagrange

Geometric Properties of Determinant 3×3

|determinant $\mid=\ldots \quad$ for 3 column vectors in a 3×3 matrix

volume of unit span parallelepiped
1773 Joseph-Louis Lagrange
0 determinant?

Geometric Properties of Determinant 3×3

|determinant $\mid=\ldots \quad$ for 3 column vectors in a 3×3 matrix

volume of unit span parallelepiped
1773 Joseph-Louis Lagrange
0 determinant? degenerate figure-smushed-like 3 vectors all
in the same plane giving 0 volume
 span is not all of \mathbb{R}^{3}
images made using VLA program by Herman and Pepe Visual Linear Algebra

Row Equivalent Rectangle?

The area of the parallelogram formed by considering the vectors in $A=\left[\begin{array}{ll}5 & 6 \\ 2 & 4\end{array}\right]$ is $|A|=8$. Can we find a rectangle that creates a matrix that is row equivalent to A with the same area?
a) impossible with the condition given
b) yes

Row Equivalent Rectangle?

The area of the parallelogram formed by considering the vectors in $A=\left[\begin{array}{ll}5 & 6 \\ 2 & 4\end{array}\right]$ is $|A|=8$. Can we find a rectangle that creates a matrix that is row equivalent to A with the same area?
a) impossible with the conditions given
b) yes
$r_{2}^{\prime}=-\frac{2}{5} r_{1}+r_{2}$ or $\left[\begin{array}{cc}1 & 0 \\ -\frac{2}{5} & 1\end{array}\right]\left[\begin{array}{ll}5 & 6 \\ 2 & 4\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 0 & \frac{8}{5}\end{array}\right]$

Row Equivalent Rectangle?

The area of the parallelogram formed by considering the vectors in $A=\left[\begin{array}{ll}5 & 6 \\ 2 & 4\end{array}\right]$ is $|A|=8$. Can we find a rectangle that creates a matrix that is row equivalent to A with the same area?
a) impossible with the conditions given
b) yes

$$
\begin{aligned}
& r_{2}^{\prime}=-\frac{2}{5} r_{1}+r_{2} \text { or }\left[\begin{array}{cc}
1 & 0 \\
-\frac{2}{5} & 1
\end{array}\right]\left[\begin{array}{ll}
5 & 6 \\
2 & 4
\end{array}\right]=\left[\begin{array}{ll}
5 & 6 \\
0 & \frac{8}{5}
\end{array}\right] \\
& r_{1}^{\prime}=-\frac{5}{8} 6 r_{2}+r_{1} \text { or }\left[\begin{array}{cc}
1 & -\frac{5}{8} 6 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
5 & 6 \\
0 & \frac{8}{5}
\end{array}\right]=\left[\begin{array}{cc}
5 & 0 \\
0 & \frac{8}{5}
\end{array}\right]
\end{aligned}
$$

