
3.1, 3.2, and 3.3 Determinants
a) invertibility of a 2× 2 matrix
b) determinant 1 (or -1) coding matrix with integer entries will

ensure we don’t pick up fractions in the decoding matrix
c) both of the above

http://www.mathplane.com/gate_dwebcomics/math_comics_archive_spring_2017
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2× 2,3× 3 and 4× 4 Determinants

Maple

∣∣∣∣a b
c d

∣∣∣∣ = ad − bc∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ first 2 columns−−−−−−−−−−−→
a b c a b
d e f d e
g h i g h

3 main diagonals: a · e · i + b · f · g + c · d · h
minus 3 off diagonals: −c · e · g − a · f · h − b · d · i
Determinant terms
2× 2 has 2 terms, 3× 3 has 6 terms, 4× 4 has 24 terms.
Do you see a pattern?

1683 Takakazu Shinsuke Seki computed
2× 2,3× 3,4× 4 and 5× 5 determinants
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Cofactor or Laplace Expansion of Determinant
n∑
1

aij(−1)i+j |matrix obtained by eliminating row i and column j |

where we have fixed i or j to expand along
1 4 7
2 5 8
3 6 9

=
n∑
1

a2jC2j =
n∑
1

a2j(−1)2+j Minor2j

∣∣∣∣∣∣∣
1 4 7
2 5 8
3 6 9

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 4 7
2 5 8
3 6 9

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 4 7
2 5 8
3 6 9

∣∣∣∣∣∣∣
2(−1)2+1

∣∣∣∣ 4 7
6 9

∣∣∣∣+ 5(−1)2+2
∣∣∣∣ 1 7

3 9

∣∣∣∣+ 8(−1)2+3
∣∣∣∣ 1 4

3 6

∣∣∣∣
2(−1)(4 · 9− 6 · 7) + 5(1)(1 · 9− 3 · 7) + 8(−1)(1 · 5− 3 · 4)
= 12− 60 + 48 = 0
1772 orbits of the inner planets
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Row 1 vs Column 1 Cofactor/Laplace Expansionn∑
1

aij(−1)i+j |matrix obtained by eliminating row i and column j |

column 1

1 4 7
2 5 8
3 6 9

=1(−1)1+1
∣∣∣∣ 5 8

6 9

∣∣∣∣+ 2(−1)2+1
∣∣∣∣ 4 7

6 9

∣∣∣∣+ 3(−1)3+1
∣∣∣∣ 4 7

5 8

∣∣∣∣ = 0

=1(1)(5 · 9− 6 · 8) + 2(−1)(4 · 9− 6 · 7) + 3(1)(4 · 8− 5 · 7)
= −3 + 12− 9 = 0 = determinant or det

row 1

1 4 7
2 5 8
3 6 9

=1(−1)1+1
∣∣∣∣ 5 8

6 9

∣∣∣∣+ 4(−1)1+2
∣∣∣∣ 2 8

3 9

∣∣∣∣+ 7(−1)1+3
∣∣∣∣ 2 5

3 6

∣∣∣∣
=1(1)(5 · 9− 6 · 8) + 4(−1)(2 · 9− 3 · 8) + 7(1)(2 · 6− 3 · 5)
= −3 + 24− 21 = 0 = determinant or det
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http://brownsharpie.courtneygibbons.org/comic/determinator/n∑
1

a1j · (−1)1+j · Det of matrix obtained by eliminating row 1 and column j where i = 1 is fixed, j = 1..5

−2 · (−1)1+1

∣∣∣∣∣∣∣∣
−2 1 0 0
1 −2 0 0
0 0 −2 1
0 0 1 −2

∣∣∣∣∣∣∣∣+ 1 · (−1)1+2

∣∣∣∣∣∣∣∣
1 1 0 0
0 −2 0 0
0 0 −2 1
0 0 1 −2

∣∣∣∣∣∣∣∣+ 0s
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Taking Advantage of 0s∣∣∣∣∣∣∣∣∣∣
5 2 0 0 −2
0 1 4 3 2
0 0 2 6 3
0 0 3 4 1
0 0 0 0 2

∣∣∣∣∣∣∣∣∣∣
By hand, compute via the cofactor/Laplace expansion:
Step 1: down the 1st column to take advantage of the 0s.
Step 2: down the 1st column of the resulting 4× 4 matrix
Step 3: along the 3rd row of the resulting 3× 3 matrix:

5(−1)1+1

∣∣∣∣∣∣∣∣
1 4 3 2
0 2 6 3
0 3 4 1
0 0 0 2

∣∣∣∣∣∣∣∣ = 5(1) · 1(−1)1+1

∣∣∣∣∣∣
2 6 3
3 4 1
0 0 2

∣∣∣∣∣∣
= 5(1) · 1(1) · 2(−1)3+3

∣∣∣∣2 6
3 4

∣∣∣∣

= 5 · 1 · 2(2 · 4− 3 · 6) = −100
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Algebraic Properties of Determinant

1812 Cauchy explored determinants, minors and cofactors and
proved |AB| = |A||B|

Compute the matrices and their determinants.

a)
∣∣∣∣1 2
3 4

∣∣∣∣ vs. det of matrix after r ′2 = −3r1 + r2:
∣∣∣∣1 2
0 −2

∣∣∣∣

b)
∣∣∣∣1 2
3 4

∣∣∣∣ vs. det of matrix after r1 ↔ r2

∣∣∣∣3 4
1 2

∣∣∣∣
c)
∣∣∣∣1 2
3 4

∣∣∣∣ vs. det of the matrix after r ′2 = cr2, c 6= 0

d)
∣∣∣∣1 2
3 4

∣∣∣∣ vs.
∣∣∣∣1 2
3 4

∣∣∣∣T =

∣∣∣∣1 3
2 4

∣∣∣∣

3.1, 3.2, 3.3 Math 2240: Introduction to Linear Algebra



Algebraic Properties of Determinant

1812 Cauchy explored determinants, minors and cofactors and
proved |AB| = |A||B|

Compute the matrices and their determinants.

a)
∣∣∣∣1 2
3 4

∣∣∣∣ vs. det of matrix after r ′2 = −3r1 + r2:
∣∣∣∣1 2
0 −2

∣∣∣∣
b)
∣∣∣∣1 2
3 4

∣∣∣∣ vs. det of matrix after r1 ↔ r2

∣∣∣∣3 4
1 2

∣∣∣∣

c)
∣∣∣∣1 2
3 4

∣∣∣∣ vs. det of the matrix after r ′2 = cr2, c 6= 0

d)
∣∣∣∣1 2
3 4

∣∣∣∣ vs.
∣∣∣∣1 2
3 4

∣∣∣∣T =

∣∣∣∣1 3
2 4

∣∣∣∣

3.1, 3.2, 3.3 Math 2240: Introduction to Linear Algebra



Algebraic Properties of Determinant

1812 Cauchy explored determinants, minors and cofactors and
proved |AB| = |A||B|

Compute the matrices and their determinants.

a)
∣∣∣∣1 2
3 4

∣∣∣∣ vs. det of matrix after r ′2 = −3r1 + r2:
∣∣∣∣1 2
0 −2

∣∣∣∣
b)
∣∣∣∣1 2
3 4

∣∣∣∣ vs. det of matrix after r1 ↔ r2

∣∣∣∣3 4
1 2

∣∣∣∣
c)
∣∣∣∣1 2
3 4

∣∣∣∣ vs. det of the matrix after r ′2 = cr2, c 6= 0

d)
∣∣∣∣1 2
3 4

∣∣∣∣ vs.
∣∣∣∣1 2
3 4

∣∣∣∣T =

∣∣∣∣1 3
2 4

∣∣∣∣

3.1, 3.2, 3.3 Math 2240: Introduction to Linear Algebra



Algebraic Properties of Determinant

1812 Cauchy explored determinants, minors and cofactors and
proved |AB| = |A||B|

Compute the matrices and their determinants.

a)
∣∣∣∣1 2
3 4

∣∣∣∣ vs. det of matrix after r ′2 = −3r1 + r2:
∣∣∣∣1 2
0 −2

∣∣∣∣
b)
∣∣∣∣1 2
3 4

∣∣∣∣ vs. det of matrix after r1 ↔ r2

∣∣∣∣3 4
1 2

∣∣∣∣
c)
∣∣∣∣1 2
3 4

∣∣∣∣ vs. det of the matrix after r ′2 = cr2, c 6= 0

d)
∣∣∣∣1 2
3 4

∣∣∣∣ vs.
∣∣∣∣1 2
3 4

∣∣∣∣T =

∣∣∣∣1 3
2 4

∣∣∣∣
3.1, 3.2, 3.3 Math 2240: Introduction to Linear Algebra



Image 1: Modeling of Hot-Mix Asphalt Compaction: A Thermodynamics-Based Compressible Viscoelastic Model

[FHWA-HRT-10-065], rest of images made using VLA program by Herman and Pepe Visual Linear Algebra

r ′j = kri + rj shear
[
1 0
k 1

]
.object same determinant

ri ↔ rj reflect
[
0 1
1 0

]
.object negative determinant

r ′j = crj scale
[
c 0
0 1

]
.object scales determinant

transpose preserves determinant
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Determinant of Triangular Matrix and Inverse
A triangular matrix has 0s below the diagonal (such as in Gaussian
to row echelon form), or 0s above the diagonal:∣∣∣∣∣∣∣∣

1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10

∣∣∣∣∣∣∣∣ or

∣∣∣∣∣∣∣∣
1 0 0 0
2 5 0 0
3 6 8 0
4 7 9 10

∣∣∣∣∣∣∣∣
By-hand, what is the determinant of a triangular matrix?

[
1 2
3 4

]−1

= 1
1·4−3·2

[
4 −2
−3 1

]
=

[
−2 1

3
2 −1

2

]
What is its determinant of the inverse
and how does it compare to the original?
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Determinant of Invertible Matrices

Assume A is invertible. Then
AA−1 = I
|AA−1| = |I|
|A||A−1| = 1
so |A| 6= 0 because 0 · |A−1| 6= 1 and |A−1| = 1

|A|

A→ I
elementary row operations
don’t change a determinant
from 0 to nonzero
since |I| = 1 then |A| 6= 0
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Invertible Matrix Theorem for An×n

The following are equivalent (TFAE):
A is an invertible matrix
A is row equivalent to the n × n identity matrix
A has n pivot positions
A~x = ~0 has only the trivial solution
columns of A form a linearly independent set
A~x = ~b has at least one solution for each ~b in Rn

columns of A span Rn

there is an n × n matrix C such that CA = I
there is an n × n matrix D such that AD = I
AT is an invertible matrix
|A| 6= 0
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Determinant 0 Matrices
Suppose the determinant of matrix A is zero. How many solutions
does the system A~x = 0 have?

The Nine Chapters on the Mathematical Art
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Trivial Solution
We find that for a square coefficient matrix A,
the homogeneous system A~x = ~0,
has only the trivial solution ~x = ~0.
This means that

a) A has a 0 determinant
b) A has a nonzero determinant
c) This tells us nothing about the determinant

Google Scholar search of applications of determinants
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Geometric Properties of Determinant 2× 2[
4 2
2 6

]
detA = detAT so examine the rows and the unit span

tr1 + sr2, 0 ≤ s, t ≤ 1
image made using VLA program by Herman and Pepe Visual Linear Algebra

strict Gaussian r ′2 = −1
2 r1 + r2 or equivalently the shear[

1 0
−1

2 1

] [
4 2
2 6

]
=

[
4 2
0 5

]
preserves determinant
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Geometric Properties of Determinant 2× 2
In general

[
1 0
t 1

]
or r ′2 = tr1 + r2 takes the second row to a vector

that ends on the line parallel to through the tip of

image made using VLA program by Herman and Pepe Visual Linear Algebra

we are acting on the rows rather than the columns
it isn’t visualized as a vertical shear—it is an r1 shear
parallel to r1 through the tip of r2
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Geometric Properties of Determinant 2× 2

images made using VLA program by Herman and Pepe Visual Linear Algebra

strict Gauss-Jordan r ′1 = −2
5 r2 + r1 or equivalently[

1 −2
5

0 1

] [
4 2
0 5

]
=

[
4 0
0 5

]
determinant = area = 20

Strict replacements shears unit span parallelograms to
rectangles with the same area. We may have had to
swap rows, changing only the sign of the determinant.
|determinant| = area parallelogram
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Geometric Properties of Determinant 3× 3

|determinant| = for 3 column vectors in a 3× 3 matrix

volume of unit span parallelepiped
1773 Joseph-Louis Lagrange
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Geometric Properties of Determinant 3× 3

|determinant| = for 3 column vectors in a 3× 3 matrix

volume of unit span parallelepiped
1773 Joseph-Louis Lagrange

3.1, 3.2, 3.3 Math 2240: Introduction to Linear Algebra



Geometric Interpretation of 0 Determinant

0 determinant? degenerate figure—smushed
3 vectors all in the same plane giving 0 volume for 3× 3
2 vectors on same line giving 0 area for 2× 2
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Row Equivalent Rectangle?
The area of the parallelogram formed by considering the vectors in

A =

[
5 6
2 4

]
is |A| = 8. Can we find a rectangle that creates a matrix

that is row equivalent to A with the same area?
a) impossible with the conditions given
b) yes

r ′2 = −2
5 r1 + r2 or

[
1 0
−2

5 1

] [
5 6
2 4

]
=
[
5 6
0 8

5

]
r ′1 = −5

86r2 + r1 or
[
1 −5

86
0 1

] [
5 6
0 8

5

]
=
[
5 0
0 8

5

]
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