3.1, 3.2, and 3.3 Determinants

- a) invertibility of a 2×2 matrix
- b) determinant 1 (or -1) coding matrix with integer entries will ensure we don't pick up fractions in the decoding matrix
- c) both of the above

$2 \times 2, 3 \times 3$ and 4×4 *Determinants*

Maple

$2 \times 2, 3 \times 3$ and 4×4 *Determinants*

Maple

3 main diagonals: $a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h$ minus 3 off diagonals: $-c \cdot e \cdot g - a \cdot f \cdot h - b \cdot d \cdot i$

$2 \times 2, 3 \times 3$ and 4×4 *Determinants*

Maple

3 main diagonals: $a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h$ minus 3 off diagonals: $-c \cdot e \cdot g - a \cdot f \cdot h - b \cdot d \cdot i$

• 2×2 has 2 terms, 3×3 has 6 terms, 4×4 has 24 terms. Do you see a pattern?

1683 Takakazu Shinsuke Seki computed 2 \times 2, 3 \times 3, 4 \times 4 and 5 \times 5 determinants

Cofactor Cij or Laplace Expansion of Determinant

 $\sum_{1}^{n} a_{ij} (-1)^{i+j} | \text{matrix obtained by eliminating row } i \text{ and column } j |$ where we have fixed i or j to expand along

Cofactor Cij or Laplace Expansion of Determinant

 $\sum_{1}^{n} a_{ij} (-1)^{i+j} | \text{matrix obtained by eliminating row } i \text{ and column } j |$ where we have fixed i or j to expand along

1 4 7
2 5 8
$$= \sum_{1}^{n} a_{2j}C_{2j} = \sum_{1}^{n} a_{2j}(-1)^{2+j} \text{ Minor}_{2j}$$

3 6 9

Cofactor Cii or Laplace Expansion of Determinant

 $\sum a_{ij}(-1)^{i+j}$ matrix obtained by eliminating row i and column j where we have fixed i or j to expand along

1 4 7
2 5 8
$$= \sum_{1}^{n} a_{2j} C_{2j} = \sum_{1}^{n} a_{2j} (-1)^{2+j} \text{ Minor}_{2j}$$

3 6 9

- 1
 4
 7

 2
 5
 8

 3
 6
 9

 1
 4
 7

 2
 5
 8

 3
 6
 9

Cofactor C_{ij} or Laplace Expansion of Determinant

 $\sum_{1}^{n} a_{ij} (-1)^{i+j} | \text{matrix obtained by eliminating row } i \text{ and column } j |$ where we have fixed i or j to expand along

$$\begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{vmatrix} = \sum_{1}^{n} a_{2j} C_{2j} = \sum_{1}^{n} a_{2j} (-1)^{2+j} \operatorname{Minor}_{2j}$$

$$\begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{vmatrix}$$

$$2(-1)^{2+1} \begin{vmatrix} 4 & 7 \\ 6 & 9 \end{vmatrix} + 5(-1)^{2+2} \begin{vmatrix} 1 & 7 \\ 3 & 9 \end{vmatrix} + 8(-1)^{2+3} \begin{vmatrix} 1 & 4 \\ 3 & 6 \end{vmatrix}$$

Cofactor Cij or Laplace Expansion of Determinant

 $\sum_{1}^{n} a_{ij} (-1)^{i+j} | \text{matrix obtained by eliminating row } i \text{ and column } j |$ where we have fixed i or j to expand along

$$\begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{vmatrix} = \sum_{1}^{n} a_{2j} C_{2j} = \sum_{1}^{n} a_{2j} (-1)^{2+j} \operatorname{Minor}_{2j}$$

$$\begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{vmatrix}$$

$$2(-1)^{2+1} \begin{vmatrix} 4 & 7 \\ 6 & 9 \end{vmatrix} + 5(-1)^{2+2} \begin{vmatrix} 1 & 7 \\ 3 & 9 \end{vmatrix} + 8(-1)^{2+3} \begin{vmatrix} 1 & 4 \\ 3 & 6 \end{vmatrix}$$

$$= 12 - 60 + 48 = 0$$

1772 orbits of the inner planets

 $\frac{\text{MOP}}{\text{http://brownsharpie.courtneygibbons.org/comic/determinator/}} \\ \frac{n}{2} a_{1j} \cdot (-1)^{1+j} \cdot \text{Det of matrix obtained by eliminating row 1 and column } j \text{ where } i = 1 \text{ is fixed, } j = 1..5} \\ \frac{n}{2} a_{1j} \cdot (-1)^{1+j} \cdot \text{Det of matrix obtained by eliminating row 1 and column } j \text{ where } i = 1 \text{ is fixed, } j = 1..5}$

 $\frac{1007}{\text{http://brownsharpie.courtneygibbons.org/comic/determinator/}} \\ \frac{n}{1} a_{1j} \cdot (-1)^{1+j} \cdot \text{Det of matrix obtained by eliminating row 1 and column } j \text{ where } i = 1 \text{ is fixed, } j = 1..5}$

Taking Advantage of 0s

By hand, use the cofactor/Laplace expansion as directed

Step 1: first expand down the first **column** to take advantage of the 0s. You'll have one nonzero term.

Step 2: then down the 1st **column** of the resulting 4×4 matrix Step 3: then along the 3rd **row** of the 3×3 matrix:

- a) 0
- b) -10
- c) 100
- d) -100
- e) other

1812 Cauchy explored determinants, minors and cofactors and proved |AB| = |A||B|

1812 Cauchy explored determinants, minors and cofactors and proved |AB| = |A||B|

a)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$
 versus determinant of matrix after $r_2' = -3r_1 + r_2$

1812 Cauchy explored determinants, minors and cofactors and proved |AB| = |A||B|

- a) $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$ versus determinant of matrix after $r_2' = -3r_1 + r_2$
- b) $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$ versus determinant of matrix after $r_1 \leftrightarrow r_2$

1812 Cauchy explored determinants, minors and cofactors and proved |AB| = |A||B|

a)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$
 versus determinant of matrix after $r_2' = -3r_1 + r_2$

b)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$
 versus determinant of matrix after $r_1 \leftrightarrow r_2$

c)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$
 versus determinant of the matrix after $r_2' = cr_2, c \neq 0$

1812 Cauchy explored determinants, minors and cofactors and proved |AB| = |A||B|

a)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$
 versus determinant of matrix after $r_2' = -3r_1 + r_2$

b)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$
 versus determinant of matrix after $r_1 \leftrightarrow r_2$

c)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$
 versus determinant of the matrix after $r_2' = cr_2, c \neq 0$

d)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$
 versus determinant of $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$

Image 1: Modeling of Hot-Mix Asphalt Compaction: A Thermodynamics-Based Compressible Viscoelastic Model [FHWA-HRT-10-065], rest of images made using VLA program by Herman and Pepe *Visual Linear Algebra*

•
$$r'_j = cr_i + r_j$$
 shear $\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$.object same determinant
• $r_i \leftrightarrow r_j$ reflect $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.object negative determinant
• $r'_j = cr_j$ scale $\begin{bmatrix} c & 0 \\ 0 & 1 \end{bmatrix}$.object scales determinant

transpose preserves determinant

Determinant of Triangular Matrix and Inverse

A triangular matrix has 0s below the diagonal (such as in Gaussian to row echelon form), or 0s above the diagonal:

1	2	3	4	or	1	0	0	0	
0	5	6	7		2	5	0	0	
0	0	8	9		3	6	8	0	
0	0	0	10		4	7	9	10	

By-hand, what is the determinant of a triangular matrix?

Determinant of Triangular Matrix and Inverse

A triangular matrix has 0s below the diagonal (such as in Gaussian to row echelon form), or 0s above the diagonal:

By-hand, what is the determinant of a triangular matrix?

What is the determinant of the inverse of a matrix?

• write the inverse of $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. What is its determinant and how does it compare to the original?

via matrix algebra

$$AA^{-1} = I$$

 $|AA^{-1}| = |I| =$

via matrix algebra

$$AA^{-1} = I$$

 $|AA^{-1}| = |I| = |A|A^{-1}| = 1$

via matrix algebra

$$AA^{-1} = I$$

 $|AA^{-1}| = |I| = |A||A^{-1}| = 1$

 via elementary row operations use Gauss-Jordan to obtain the reduced row echelon form of A. What is A row equivalent to?

via matrix algebra

$$AA^{-1} = I$$

 $|AA^{-1}| = |I| = |A||A^{-1}| = |AA^{-1}| = 1$

- via elementary row operations
 use Gauss-Jordan to obtain the reduced row echelon form
 of A. What is A row equivalent to? I
 How could we have changed the determinant? Zeroness?
- connections: invertible matrix theorem

Determinant 0 Matrices

Suppose the determinant of matrix A is zero. How many solutions does the system $A\vec{x} = 0$ have?

- a) 0
- b) -
- c) 2
- d) ∞
- e) other

The Nine Chapters on the Mathematical Art

Trivial Solution

We find that for a square coefficient matrix A, the homogeneous system $A\vec{x} = \vec{0}$, has only the trivial solution $\vec{x} = \vec{0}$. This means that

- a) A has a 0 determinant
- b) A has a nonzero determinant
- c) This tells us nothing about the determinant

A short survey of some recent applications of determinants

PR Vein - Linear Algebra and its **Applications**, 1982 - Elsevier

Determinants declined in prestige from the mid-nineteenth century onwards and are now best known for their **applications** in matrix theory, where they appear in a subsidiary role. However, during the last thirty years **determinants** have arisen independently of matrices in ...

☆ 55 Cited by 11 Related articles All 3 versions

[воок] Determinants and their applications in mathematical physics

R Vein, P Dale - 2006 - books.google.com

The last treatise on the theory of **determinants**, by T. Muir, revised and enlarged by WH Metzler, was published by Dover Publications Inc. in 1960. It is an unabridged and corrected republication of the edition ori-nally published by Longman, Green and Co. in 1933 and ...

☆ 50 Cited by 198 Related articles All 16 versions >>

$$\begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix} det A = det A^T so examine the rows and the unit span$$

$$tr_1 + sr_2$$
, $0 \le s, t \le 1$

 $\begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix}$ det $A = \det A^T$ so examine the rows and the unit span

$$tr_1 + sr_2, 0 < s, t < 1$$

image made using VLA program by Herman and Pepe Visual Linear Algebra

 $\begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix}$ det $A = \det A^T$ so examine the rows and the unit span

$$tr_1 + sr_2, 0 < s, t < 1$$

image made using VLA program by Herman and Pepe Visual Linear Algebra

strict Gaussian

 $\begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix}$ det $A = \det A^T$ so examine the rows and the unit span

$$tr_1 + sr_2, 0 \le s, t \le 1$$

image made using VLA program by Herman and Pepe Visual Linear Algebra

strict Gaussian $r_2' = -\frac{1}{2}r_1 + r_2$ or equivalently the shear

$$\begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 0 & 5 \end{bmatrix}$$
 preserves determinant

In general $\begin{bmatrix} 1 & 0 \\ t & 1 \end{bmatrix}$ or $r_2' = tr_1 + r_2$ takes the second row to a vector that ends on the line parallel to _ through the tip of _

In general $\begin{bmatrix} 1 & 0 \\ t & 1 \end{bmatrix}$ or $r_2' = tr_1 + r_2$ takes the second row to a vector that ends on the line parallel to _ through the tip of _

In general $\begin{bmatrix} 1 & 0 \\ t & 1 \end{bmatrix}$ or $r_2' = tr_1 + r_2$ takes the second row to a vector that ends on the line parallel to _ through the tip of _

images made using VLA program by Herman and Pepe Visual Linear Algebra

Note: since we are acting on the rows rather than the columns it isn't visualized as a vertical shear—it is an r_1 shear

images made using VLA program by Herman and Pepe Visual Linear Algebra

strict Gauss-Jordan
$$r'_1 = -\frac{2}{5}r_2 + r_1$$
 or equivalently

$$\begin{bmatrix} 1 & -\frac{2}{5} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 5 \end{bmatrix}$$
 determinant =

images made using VLA program by Herman and Pepe Visual Linear Algebra

strict Gauss-Jordan
$$r'_1 = -\frac{2}{5}r_2 + r_1$$
 or equivalently

$$\begin{bmatrix} 1 & -\frac{2}{5} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 5 \end{bmatrix} \text{ determinant = area = 20}$$

3.1, 3.2, 3.3

Strict replacements shears unit span parallelograms to rectangles with the same area. We may have had to swap rows to make this work, changing only the sign of the determinant. $|determinant| = area for 2 column vectors in a 2 <math>\times$ 2 matrix

 $|determinant| = \underline{\hspace{1cm}}$ for 3 column vectors in a 3 \times 3 matrix

 $|determinant| = \underline{\hspace{1cm}}$ for 3 column vectors in a 3 \times 3 matrix

volume of unit span parallelepiped 1773 Joseph-Louis Lagrange

 $|determinant| = \underline{\hspace{1cm}}$ for 3 column vectors in a 3 \times 3 matrix

volume of unit span parallelepiped 1773 Joseph-Louis Lagrange 0 determinant?

 $|determinant| = \underline{\hspace{1cm}} for 3 column vectors in a 3 <math>\times$ 3 matrix

volume of unit span parallelepiped 1773 Joseph-Louis Lagrange

0 determinant? degenerate figure—smushed—like 3 vectors all

in the same plane giving 0 volume

span is not all of \mathbb{R}^3

images made using VLA program by Herman and Pepe Visual Linear Algebra

Row Equivalent Rectangle?

The area of the parallelogram formed by considering the vectors in $A = \begin{bmatrix} 5 & 6 \\ 2 & 4 \end{bmatrix}$ is |A| = 8. Can we find a rectangle that creates a matrix that is row equivalent to A with the same area?

- a) impossible with the conditions given
- b) yes

Row Equivalent Rectangle?

The area of the parallelogram formed by considering the vectors in $A = \begin{bmatrix} 5 & 6 \\ 2 & 4 \end{bmatrix}$ is |A| = 8. Can we find a rectangle that creates a matrix that is row equivalent to A with the same area?

- a) impossible with the conditions given
- b) yes

$$r_2' = -\frac{2}{5}r_1 + r_2 \text{ or } \begin{bmatrix} 1 & 0 \\ -\frac{2}{5} & 1 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 0 & \frac{8}{5} \end{bmatrix}$$

Row Equivalent Rectangle?

The area of the parallelogram formed by considering the vectors in $A = \begin{bmatrix} 5 & 6 \\ 2 & 4 \end{bmatrix}$ is |A| = 8. Can we find a rectangle that creates a matrix that is row equivalent to A with the same area?

- a) impossible with the conditions given
- b) yes

$$r_2' = -\frac{2}{5}r_1 + r_2 \text{ or } \begin{bmatrix} 1 & 0 \\ -\frac{2}{5} & 1 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 0 & \frac{8}{5} \end{bmatrix}$$
$$r_1' = -\frac{5}{8}6r_2 + r_1 \text{ or } \begin{bmatrix} 1 & -\frac{5}{8}6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 0 & \frac{8}{5} \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & \frac{8}{5} \end{bmatrix}$$

