5.1 and 5.2 Eigenvalues and Eigenvectors
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@ If AX realigns on the same line as X via AX = \X then X is

an eigenvector and X is an eigenvalue
@ AX = \X matrix multiplication to scalar multiplication by A
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Eigenvalues and Eigenvectors of a Horizontal Shear

@ If AX realigns on the same line as X via AX = A\X then X is
an eigenvector and X is an eigenvalue

Vectors on the x-axis are fixed in the animation, i.e. A = 1
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Eigenvalues and Eigenvectors of a Horizontal Shear

@ If AX realigns on the same line as X via AX = A\X then X is
an eigenvector and X is an eigenvalue

Vectors on the x-axis are fixed in the animation, i.e. A = 1

120 x| x| X S 4o
Try it: [0 1] [0} _[0} =1 [O] S0 AX = 1x
So anything on the x-axis, like [8] is an I eigenvector | with
eigenvalue | 1. The I eigenspace || for A = 1 is the entire set

of eigenvectors corresponding to this eigenvalue, the [X=axis .

eigenvector eigenspace is x-axis
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Eigenvalues & Eigenvectors of Reflection across y = x

Consider what else realigns on the same line through the origin.

5.1and 5.2 Math 2240: Introduction to Linear Algebra



Eigenvalues & Eigenvectors of Reflection across y = x

Consider what else realigns on the same line through the origin.
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Maple —\ shows orthogonal eigenspaces:

A =1 has y = x eigenspace with Maple basis [”

A = —1 has y = —x eigenspace with Maple basis [11]
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7 — Rotation about z-axis in R3

Consider what realigns on the same line through the origin.
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7 — Rotation about z-axis in R3

Consider what realigns on the same line through the origin.
any vectoronthe 0 — 0 — zline has A =1

-1 0 O0f |x —X
0o -1 0] !y] = {y] A = —1 eigenspace is plane
0O 0 1] 10 0

Maple

The eigenspace corresponding to the eigenvalue A = —1 is

1 0

given by span { {0] ) {1] } the plane, and the eigenspace
0f (O

corresponding to the A = 1 eigenvalue is given by

0
span { {0] } the z-axis.
1
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Eigenvalues and Eigenvectors Algebraically
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Eigenvalues and Eigenvectors Algebraically
AR = AX = \(IX) =
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Eigenvalues and Eigenvectors Algebraically
AR = AX = \(IX) = (ADX
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Eigenvalues and Eigenvectors Algebraically
AX = XX = M(IX) = (A\)X
AX —(AM)X =0
(A= AD)X =0
so eigenvectors of A are in the nullspace of (A — A/). We want
non-trivial solutions, so
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Eigenvalues and Eigenvectors Algebraically
AX = XX = M(IX) = (A\)X
AX —(AM)X =0
(A= AD)X =0
so eigenvectors of A are in the nullspace of (A — A/). We want
non-trivial solutions, so determinant (A — \/) =
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Eigenvalues and Eigenvectors Algebraically
AX = A\X = A\(IX) = (A\)X
AX —(AM)X =0
(A= AD)X =0
so eigenvectors of A are in the nullspace of (A — A/). We want
non-trivial solutions, so determinant (A — A/) = 0 let’s us solve
for any As first, and is called the characteristic equation.

11
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characteristic equation: 0 =det(A — A\l) = (3 — A\)(z — \) — &
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Eigenvalues and Eigenvectors Algebraically
AR = AX = M(IX) = (ADX
AX —(AM)X =0
(A= AD)X =0
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so eigenvectors of A are in the nullspace of (A — A/). We want
for any As first, and is called the characteristic equation.
1 1
5 0 A 53— A
multiply out and solve for \:
O=2-A+M—1=X-X=)A-1)

non-trivial solutions, so determinant (A — A/) = 0 let’s us solve
1

characteristic equation: 0 =det(A — A\l) = (3 — A\)(z — \) — &

So A =0and A = 1 are eigenvalues
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Eigenvalues and Eigenvectors Algebraically
eigenvectors of A are in the nullspace of (A — A/). We want
non-trivial solutions, so we obtained the eigenvalues from the
characteristic equation determinant (A — A/) = 0.

TR

ol 0
0 0|

>

Il
| —— |
N = =
N = =
il STEE ST

0

NI= = pyja o=

"
o
1
[\eIE
ni— |
o
R
| —— |
N|—= N

5.1and 5.2 Math 2240: Introduction to Linear Algebra



Eigenvalues and Eigenvectors Algebraically
eigenvectors of A are in the nullspace of (A — A/). We want
non-trivial solutions, so we obtained the eigenvalues from the
characteristic equation determinant (A — A/) = 0.

A0 -2 4
A= A—-)\l= — = |-,
0 A 5 -

N = POl
N = o=
—
\IE

1 1
2 2
L 3
1 1 1 1 1 1
5—0 5 0 5 5 0| r=—n+r |5 5 O
K 2 _ |2 2 2 L2 2
[ 10 o] L 30 0 00

y = tthen backsub into row 1: Jx + 1y = 0so x = —t. Then

nullspace of A — 0/ is [tt] =t {11], i.e. y = —xline

= 1
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Eigenvalues and Eigenvectors Algebraically
eigenvectors of A are in the nullspace of (A — A/). We want
non-trivial solutions, so we obtained the eigenvalues from the
characteristic equation determinant (A — A/) = 0.

SR e

A= A—- A=

N = POl
N = o=
—

11
2 2
L 2 :
1 1 1 1 1 1
5—0 5 0 5 5 0| r=—n+r |5 5 O
K 2 _ |2 2 2 L2 2
[ F 3-0 o] L 30 000

y = tthen backsub into row 1: Jx + 1y = 0so x = —t. Then

nullspace of A — 0/ is [tt] =t {11], i.e. y = —xline

[; 1 0]:[—; 5 0] genin [~}
— 0

O =
o

0

y =t x=tsonullspace of A—list m i.e. y = xline
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Eigenvalues Algebraically By the Quadratic Formula
S LRV R
characteristic equation:
O=det(A— M) = (3= A\)(=1—=)X) = (=2)(1) = X2 — 2\ — 1
solving for eigenvalues of a\2 + b\ + c:
o —b+ Vb —4ac - —2+./(-2)2—4(1)(-1) 4B

2a 2(1)
soN=1++vV2~2414and\=1—-v2~ —.414
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Eigenvalues Algebraically By the Quadratic Formula
3 -2 3—-x -2

A= A—- )=

a2
characteristic equation:
O=det(A— M) = (3= A\)(=1—=)X) = (=2)(1) = X2 — 2\ — 1
solving for eigenvalues of a\2 + b\ + c:

_ 2 _ _ —9)2 _ _
5\ b+ Vb 4ac _ 24+ /(-2 1)( 1):11\@

2a 2(1)

sol=1++v2~2414and A =1—- V2~ —.414

y (1+)2)x
> (1-/2)%
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Implications of the Algebra and Geometry
It is always the case that scaling a vector by ) is the same as
changing its length by A\. Why? The length of \X is
VAX - AX=VA2X - X = A/X - X
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Implications of the Algebra and Geometry
@ )\ =0is an eigenvalue of Aif a line (orqmore) gets
smushed to the origin i.e. AX = 0X = 0 has a non-trivial
solution and A is not invertible
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http://mathonline.wikidot.com/triangular-matrices 

Implications of the Algebra and Geometry
@ )\ =0is an eigenvalue of Aif a line (orqmore) gets
smushed to the origin i.e. AX = 0X = 0 has a non-trivial
solution and A is not invertible

http://mathonline.wikidot.com/triangular-matrices

@ The eigenvalues of a triangular matrix:
0 = determinant (A — \/) = (a11 — A\)(ao2 — A)...(@nn — A)
are exactly the diagonal entries of that triangular matrix
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http://mathonline.wikidot.com/triangular-matrices 

Invertible Matrix Theorem for Anxn

The following are equivalent (TFAE):
@ Ais an invertible matrix
@ Ais row equivalent to the n x nidentity matrix
@ A has n pivot positions
@ AX = 0 has only the trivial solution
@ columns of A form a linearly independent set
@ AX = b has at least one solution for each b in R
@ columns of A span R”
@ there is an n x n matrix C such that CA =1/
@ there is an n x n matrix D such that AD =/
@ AT is an invertible matrix
@ A #0
@ no eigenvalue is 0
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Another Example

Solve for the eigenvalues of [_01 g)] J(A=AN| =0
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Another Example

Solve for the eigenvalues of [_01 g] (A= X)| =0
0= 11 _—Oi\/02—4(1)(1)
0= 0—/\‘_)\ oA 2(1)

What geometric transformation is this? Consider why nothing
(aside from 0) realigns on the same line through the origin.
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Another Example

Solve for the eigenvalues of [_01 g] (A= X)| =0
0= 11 _—Oi\/02—4(1)(1)
0= 0—/\‘_)\ oA 2(1)

What geometric transformation is this? Consider why nothing
(aside from 0) realigns on the same line through the origin.
[O 1] B [cos(—g) —sin(—g)}

-1 0]  [sin(—%) cos(—%)
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Probability, Markov, or Stochastic Matrix

A basketball team has a 60% probability of winning their next
game if they have won their previous game but only a 30%
probability of winning their next game if they have lost their
previous game. Let % — [% chance of winning game k

) % chance of losing game k |’
[.6 3 3
4 7|7k
What are the eigenvalues?

Then X1 =
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Probability, Markov, or Stochastic Matrix

A basketball team has a 60% probability of winning their next
game if they have won their previous game but only a 30%
probability of winning their next game if they have lost their
% chance of winning game k

previous game. Let x = [ % chance of losing game k |’

S 6 3|
Then Xkr1 = |:4 7 Xk
What are the eigenvalues?
66— 3
0= 4 7= (6 —X)(.7-X)—(.3)(.4)

=X -13\+3=\-1)(A-.3)

The eigenspace corresponding to the larger magnitude

eigenvalue is especially useful! Here A = 1 dominant
6—1 3 0

[ 4 71 o}
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Probability, Markov, or Stochastic Matrix

A basketball team has a 60% probability of winning their next
game if they have won their previous game but only a 30%
probability of winning their next game if they have lost their
% chance of winning game k

previous game. Let x = [ % chance of losing game k |’

S 6 3|
Then Xkr1 = |:4 7 Xk
What are the eigenvalues?
66— 3
0= 4 7= (6 —X)(.7-X)—(.3)(.4)

=X -13\+3=\-1)(A-.3)
The eigenspace corresponding to the larger magnitude
eigenvalue is especially useful! Here A = 1 dominant

6-1 3 0] f=nte [~4 3 0] 3| 4,
4 7-10 "lo 0 o0 1| V=3
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A = 1 in Probability, Markov, or Stochastic Matrix
Here A = 1 is especially useful since that leads to a steady

state in the long run (we’ll see more about why in 5.6):
3

AX =1X=XforX =t [;‘] in the eigenspace for A = 1
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A = 1 in Probability, Markov, or Stochastic Matrix
Here A = 1 is especially useful since that leads to a steady

state in the long run (we’ll see more about why in 5.6):
3

AX =1X=XforX =t [;‘] in the eigenspace for A = 1

Also 3t + t = 1 as we either win or lose
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A = 1 in Probability, Markov, or Stochastic Matrix
Here A = 1 is especially useful since that leads to a steady

state in the long run (we’ll see more about why in 5.6):
3

AX =1X=XforX =t [;‘] in the eigenspace for A = 1

Also 3t +t =1 as we either winorloseso 2t =1and t = 2
4 i 7

BE
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Thus in the long run we stabilize to [
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A = 1 in Probability, Markov, or Stochastic Matrix
Here A = 1 is especially useful since that leads to a steady

state in the long run (we’ll see more about why in 5.6):
3

AX =1X=XforX =t ;‘ in the eigenspace for A = 1

Also 3t +t =1 as we either win or lose so t=1and t = %

3
Thus in the long run we stabilize to |} | ~ [‘513]
4 :
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The $25,000,000,000 Eigenvector: The Linear Algebra behind Google
Kurt Bryan and Tanya Leise
https://doi.org/10.1137/050623280

The $25,000,000,000 Eigenvector: The Linear Algebra behind Google

Kurt Bryan and Tanya Leise
https://doi.org/10.1137/050623280
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market

Google's success derives in large part from its PageRank algorithm, which ranks the

Financial Markov Process, Creative Commons Attribution-Share Alike 3.0 Unported license.
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