5.1 and 5.2 Eigenvalues and Eigenvectors
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@ If AX realigns on the same line as X via AX = \X then X is
an eigenvector and X is an eigenvalue
@ AX = \X matrix multiplication to scalar multiplication by A
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Eigenvalues and Eigenvectors of a Horizontal Shear

@ If AX realigns on the same line as X via AX = \X then X is
an eigenvector and X is an eigenvalue

Vectors on the x-axis are fixed in the animation, i.e. A = 1
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Eigenvalues and Eigenvectors of a Horizontal Shear

@ If AX realigns on the same line as X via AX = \X then X is
an eigenvector and X is an eigenvalue

Vectors on the x-axis are fixed in the animation, i.e. A = 1
12 (x| x| X S 4z
Try it: [O 1] [0] _[O] =1 [O] S0 AX =1X

So anything on the x-axis, like B] is an | eigenvector | with

eigenvalue | '1. The for A = 1 is the entire set

of eigenvectors corresponding to this eigenvalue, the [X=axis..

eigenvector eigenspace is x-axis
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Eigenvalues & Eigenvectors of Reflection across y = x

Consider what else realigns on the same line through the origin.
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Eigenvalues & Eigenvectors of Reflection across y = x

Consider what else realigns on the same line through the origin.
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Maple — shows orthogonal eigenspaces:

A =1 has y = x eigenspace with Maple basis m

A = —1 has y = —x eigenspace with Maple basis [11}
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7 — Rotation about z-axis in R3

Consider what realigns on the same line through the origin.
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7 — Rotation about z-axis in R3

Consider what realigns on the same line through the origin.
any vectoronthe 0 — 0 — zline has A = 1

-1 0 O0f |x —X
0 -1 0| |y| =|-y| A= —1eigenspace is plane

0O 0 1] 10 0
Maple
The eigenspace corresponding to the eigenvalue A = —1 is

ol [o

given by span { [1] , !0] } the plane, and the eigenspace
o [1

corresponding to the A = 1 eigenspace is given by

0
span { [O} } the z-axis.
1
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Eigenvalues and Eigenvectors Algebraically
AR = AX
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Eigenvalues and Eigenvectors Algebraically
AR = A% = \(IX) =
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Eigenvalues and Eigenvectors Algebraically
AR = A% = A(IX) = (ADX
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Eigenvalues and Eigenvectors Algebraically
AX = MX = A\(IX) = (A)X
AX —(AM)X =0
(A—AD)X =0
so eigenvectors of A are in the nullspace of (A — A\/). We want
non-trivial solutions, so
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Eigenvalues and Eigenvectors Algebraically
AX = MX = A\(IX) = (A)X
AX —(AM)X =0
(A—AD)X =0
so eigenvectors of A are in the nullspace of (A — A\/). We want
non-trivial solutions, so determinant (A — \/) =
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Eigenvalues and Eigenvectors Algebraically
AX = XX = A\(IX) = (\)X
AX —(AM)X =0
(A—AD)X =0
so eigenvectors of A are in the nullspace of (A — A\/). We want
non-trivial solutions, so determinant (A — A/) = 0 let’s us solve
for any As first, and is called the characteristic equation.

11
S
T 1 1
o R R
2 2 2 2
characteristic equation: 0 =det(A — \l) = (3 — A\)(z — \) — &

5.1and 5.2 Math 2240: Introduction to Linear Algebra



Eigenvalues and Eigenvectors Algebraically
AR = A% = M(IX) = (ADX
AX —(AM)X =0
(A—AD)X =0

A=

NI—= =
Nl — Pol—=

A

ASIE TR
-

| o= |
| =

so eigenvectors of A are in the nullspace of (A — A\/). We want
for any As first, and is called the characteristic equation.

1 A0 1

5 0 A 53— A
multiply out and solve for A:
O=1-A+X2-1=X2-A=)\)-1)

non-trivial solutions, so determinant (A — A/) = 0 let’s us solve
1

characteristic equation: 0 =det(A — \l) = (3 — A\)(z — \) — &

So A =0and A = 1 are eigenvalues
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Eigenvalues and Eigenvectors Algebraically
eigenvectors of A are in the nullspace of (A — /). We want
non-trivial solutions, so we obtained the eigenvalues from the
characteristic equation determinant (A — \/) = 0.

1 1
A:§§ A—)\/:%%—)\OZ%_/\ %
;] ] I 20 el R A
1 1 1 1
P
2 200 |3 30
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Eigenvalues and Eigenvectors Algebraically
eigenvectors of A are in the nullspace of (A — /). We want
non-trivial solutions, so we obtained the eigenvalues from the
characteristic equation determinant (A — \/) = 0.

1

2 2 2 2 0 A 2 A
o[t0 b O [E o) a3 40

S I 00 0

y = t then backsub into row 1: 1x + 5y = 0so x = —t. Then

nullspace of A — 0/ is [tt} =t [11], i.e. y = —xline

A=1
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Eigenvalues and Eigenvectors Algebraically
eigenvectors of A are in the nullspace of (A — /). We want
non-trivial solutions, so we obtained the eigenvalues from the
characteristic equation determinant (A — \/) = 0.

1 1 1 1 1 1
ol R
2 2 2 2 2 2
A:o[;—o : oH; : o] [; } o]
I 1-00 T30 000

y = t then backsub into row 1: 1x + 5y = 0so x = —t. Then

nullspace of A — 0/ is [tq =t [11], i.e. y = —xline

iyt 3 gL e
2 210 2 =2 0 0

i.e. y = xline

O =
o

y =t x =tsonullspace of A— lis t m
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Eigenvalues Algebraically By the Quadratic Formula

A ]3 2 3-x -2
1 —1 1 —1-2

A— )\l = [
characteristic equation:
O=det(A— A) = (3= A\)(—=1=X) = (=2)(1) = X2 — 2\ — 1
solving for eigenvalues of a\? + b\ + c
_ 2 _ _

b+ vb?—4ac _ 24+ /(22 - 4(1)(— ):1i\/§

2a 2(1)

soA=1+vV2~2414and \=1—- V2~ —.414

A=
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Eigenvalues Algebraically By the Quadratic Formula

A ]3 2 3-x -2
1 —1 1 —1-2

A— )\l = [
characteristic equation:
O=det(A— A) = (3= A\)(—=1=X) = (=2)(1) = X2 — 2\ — 1
solving for eigenvalues of a\? + b\ + c
_ 2 _ _

b+ vb?—4ac _ 24+ /(22 - 4(1)(— ):1i\/§

2a 2(1)

sol=1++vV2~2414and \=1—v2~ —.414

y (1+2) l
X
X (1-/2)x

A=
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Implications of the Algebra and Geometry
It is always the case that scaling a vector by ) is the same as
changing its length by A\. Why? The length of \X is
VAX - AX=VA2X - X = /X - X
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Implications of the Algebra and Geometry

@ )\ =0is an eigenvalue of Aif aline (oLmore) gets
smushed to the origini.e. AX = 0X = 0 has a non-trivial
solution and A is not invertible
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http://mathonline.wikidot.com/triangular-matrices 

Implications of the Algebra and Geometry

@ )\ =0is an eigenvalue of Aif aline (oLmore) gets
smushed to the origini.e. AX = 0X = 0 has a non-trivial
solution and A is not invertible

http://mathonline.wikidot.com/triangular-matrices

@ The eigenvalues of a triangular matrix:
0 = determinant (A — \) = (@11 — A\)(@o2 — A)...(@nn — A)
are exactly the diagonal entries of that triangular matrix
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http://mathonline.wikidot.com/triangular-matrices 

Another Example

Solve for the eigenvalues of [_01 (1)} J(A=AN| =0
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Another Example

Solve for the eigenvalues of [_01 (1)} (A=A =0
_0—=A LI =0+ /02 —4(1)(1)
=11 0—/\’_)\ A= 2(1)

What geometric transformation is this? Consider why nothing
(aside from 0) realigns on the same line through the origin.
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Another Example

Solve for the eigenvalues of [_01 (1)} (A=A =0
_0—=A LI =0+ /02 —4(1)(1)
=11 0—/\’_)\ A= 2(1)

What geometric transformation is this? Consider why nothing
(aside from 5) realigns on the same line through the origin.
[O 1} B [cos(—g) —sin(—g)]

-1 0] [sin(—%) cos(—%)
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Probability, Markov, or Stochastic Matrix

A basketball team has a 60% probability of winning their next
game if they have won their previous game but only a 30%
probability of winning their next game if they have lost their
% chance of winning game k

previous game. Let x = [ % chance of losing game k |’

- 6 3|
Then X1 = |:4 7:| Xk
What are the eigenvalues?
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Probability, Markov, or Stochastic Matrix

A basketball team has a 60% probability of winning their next
game if they have won their previous game but only a 30%
probability of winning their next game if they have lost their
% chance of winning game k

previous game. Let x = [ % chance of losing game k

Then Xk+1 = |:2 §:| )?k

What are the eigenvalues?
66—\ 3
0= 4 77 (.6 —N)(.7—-X)—(.3)(.4)

=X -13\+3=\-1)(A-.3)

The eigenspace corresponding to the larger magnitude

eigenvalue is especially useful! Here A = 1 dominant
6—1 3 0

[ 4 71 0}
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Probability, Markov, or Stochastic Matrix

A basketball team has a 60% probability of winning their next
game if they have won their previous game but only a 30%
probability of winning their next game if they have lost their
% chance of winning game k

previous game. Let x = [ % chance of losing game k |’

Then Xk+1 = |:2 §:| )?k

What are the eigenvalues?
66—\ 3
0= 4 77 (.6 —N)(.7—-X)—(.3)(.4)

=X -13\+3=\-1)(A-.3)
The eigenspace corresponding to the larger magnitude
eigenvalue is especially useful! Here A = 1 dominant

6-1 3 0] g=nte [—4 3 0] NG| . 4,
4 7-10 "lo 0 o0 1| V=3
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A = 1 in Probability, Markov, or Stochastic Matrix

Here A = 1 is especially useful since that leads to a steady

state in the long run (we’ll see more about why in 5.6):
3

AX=1X=XforX =t [;‘] in the eigenspace for \ = 1
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A = 1 in Probability, Markov, or Stochastic Matrix

Here A = 1 is especially useful since that leads to a steady

state in the long run (we’ll see more about why in 5.6):
3

AX=1X=XforX =t [;‘] in the eigenspace for \ = 1

Also 3t + t = 1 as we either win or lose
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A = 1 in Probability, Markov, or Stochastic Matrix
Here A = 1 is especially useful since that leads to a steady

state in the long run (we’ll see more about why in 5.6):
3

AX =1X =XforX =t [;‘] in the eigenspace for A = 1
Also 2t +t = 1 as we either win or lose so ft=1and t = %

|-[4]

Thus in the long run we stabilize to [

~NIB W
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A = 1 in Probability, Markov, or Stochastic Matrix
Here A = 1 is especially useful since that leads to a steady

state in the long run (we’ll see more about why in 5.6):
3

AX =1X =XforX =t ;‘ in the eigenspace for A = 1
Also 2t +t = 1 as we either win or lose so ft=1and t = %

3
Thus in the long run we stabilize to |} | ~ [‘51':73]
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The $25,000,000,000 Eigenvector: The Linear Algebra behind Google
Kurt Bryan and Tanya Leise
https://doi.org/10.1137/050623280

The $25,000,000,000 Eigenvector: The Linear Algebra behind Google
Stagna.nt, Kurt Bryan and Tanya Leise
\ﬁrkct https://doi.org/10.1137/050623280

Google's success derives in large part from its PageRank algorithm, which ranks the

Financial Markov Process, Creative Commons Attribution-Share Alike 3.0 Unported license.
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