5.1 and 5.2 Eigenvalues and Eigenvectors

algebra matrices *systems ©. detẹninantso

$$
\begin{aligned}
& \text { on in Or spaces }
\end{aligned}
$$

$$
\begin{aligned}
& \text { orthogonality } \\
& \text { opplications } \\
& \text { कconnections } \\
& \text { eigenvaluess vétors }
\end{aligned}
$$

- If $A \vec{x}$ realigns on the same line as \vec{x} via $A \vec{x}=\lambda \vec{x}$ then \vec{x} is an eigenvector and λ is an eigenvalue
- $A \vec{x}=\lambda \vec{x}$ matrix multiplication to scalar multiplication by $\lambda_{\bar{\equiv}}$

Eigenvalues and Eigenvectors of a Horizontal Shear

- If $A \vec{x}$ realigns on the same line as \vec{x} via $A \vec{x}=\lambda \vec{x}$ then \vec{x} is an eigenvector and λ is an eigenvalue
Vectors on the x-axis are fixed in the animation, i.e. $\lambda=1$
Try it: $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ 0\end{array}\right]=$

Eigenvalues and Eigenvectors of a Horizontal Shear

- If $A \vec{x}$ realigns on the same line as \vec{x} via $A \vec{x}=\lambda \vec{x}$ then \vec{x} is an eigenvector and λ is an eigenvalue
Vectors on the x-axis are fixed in the animation, i.e. $\lambda=1$
Try it: $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ 0\end{array}\right]=\left[\begin{array}{l}x \\ 0\end{array}\right]=1\left[\begin{array}{l}x \\ 0\end{array}\right]$ so $A \vec{x}=1 \vec{x}$
So anything on the x-axis, like
of eigenvectors corresponding to this eigenvalue, the x -axis .

Eigenvalues \& Eigenvectors of Reflection across $y=x$

Consider what else realigns on the same line through the origin.

Eigenvalues \& Eigenvectors of Reflection across $y=x$

Consider what else realigns on the same line through the origin.

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-x \\
x
\end{array}\right]=\left[\begin{array}{c}
x \\
-x
\end{array}\right]=-1\left[\begin{array}{c}
-x \\
x
\end{array}\right]
$$

Maple $^{\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]}$
shows orthogonal eigenspaces:
$\lambda=1$ has $y=x$ eigenspace with Maple basis
$\lambda=-1$ has $y=-x$ eigenspace with Maple basis $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

π - Rotation about z-axis in \mathbb{R}^{3}

Consider what realigns on the same line through the origin.

π - Rotation about z-axis in \mathbb{R}^{3}

Consider what realigns on the same line through the origin. any vector on the $0-0-z$ line has $\lambda=1$
$\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 0\end{array}\right]=\left[\begin{array}{c}-x \\ -y \\ 0\end{array}\right] \lambda=-1$ eigenspace is plane
Maple
The eigenspace corresponding to the eigenvalue $\lambda=-1$ is
given by span $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$, the plane, and the eigenspace
corresponding to the $\lambda=1$ eigenspace is given by
span $\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$, the z-axis.

Eigenvalues and Eigenvectors Algebraically $A \vec{x}=\lambda \vec{x}$

Eigenvalues and Eigenvectors Algebraically $A \vec{x}=\lambda \vec{x}=\lambda(I \vec{x})=$

Eigenvalues and Eigenvectors Algebraically $A \vec{x}=\lambda \vec{x}=\lambda(\mid \vec{x})=(\lambda I) \vec{x}$

Eigenvalues and Eigenvectors Algebraically

$$
\begin{aligned}
& A \vec{x}=\lambda \vec{x}=\lambda(I \vec{x})=(\lambda I) \vec{x} \\
& A \vec{x}-(\lambda I) \vec{x}=\overrightarrow{0} \\
& (A-\lambda I) \vec{x}=\overrightarrow{0}
\end{aligned}
$$

so eigenvectors of A are in the nullspace of $(A-\lambda /)$. We want non-trivial solutions, so

Eigenvalues and Eigenvectors Algebraically

$$
\begin{aligned}
& A \vec{x}=\lambda \vec{x}=\lambda(I \vec{x})=(\lambda I) \vec{x} \\
& A \vec{x}-(\lambda I) \vec{x}=\overrightarrow{0} \\
& (A-\lambda I) \vec{x}=\overrightarrow{0}
\end{aligned}
$$

so eigenvectors of A are in the nullspace of $(A-\lambda /)$. We want non-trivial solutions, so determinant $(A-\lambda I)=$

Eigenvalues and Eigenvectors Algebraically

$A \vec{x}=\lambda \vec{x}=\lambda(I \vec{x})=(\lambda I) \vec{x}$
$A \vec{x}-(\lambda I) \vec{x}=\overrightarrow{0}$
$(A-\lambda I) \vec{x}=\overrightarrow{0}$
so eigenvectors of A are in the nullspace of $(A-\lambda /)$. We want non-trivial solutions, so determinant $(A-\lambda I)=0$ let's us solve for any $\lambda \mathrm{s}$ first, and is called the characteristic equation.
$A=\left[\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$
$A-\lambda I=\left[\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2}-\lambda & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}-\lambda\end{array}\right]$
characteristic equation: $0=\operatorname{det}(A-\lambda I)=\left(\frac{1}{2}-\lambda\right)\left(\frac{1}{2}-\lambda\right)-\frac{1}{4}$

Eigenvalues and Eigenvectors Algebraically

$A \vec{x}=\lambda \vec{x}=\lambda(I \vec{x})=(\lambda I) \vec{x}$
$A \vec{x}-(\lambda /) \vec{x}=\overrightarrow{0}$
$(A-\lambda I) \vec{x}=\overrightarrow{0}$
so eigenvectors of A are in the nullspace of $(A-\lambda /)$. We want non-trivial solutions, so determinant $(A-\lambda /)=0$ let's us solve for any $\lambda \mathrm{s}$ first, and is called the characteristic equation.
$A=\left[\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$
$A-\lambda I=\left[\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2}-\lambda & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}-\lambda\end{array}\right]$
characteristic equation: $0=\operatorname{det}(A-\lambda I)=\left(\frac{1}{2}-\lambda\right)\left(\frac{1}{2}-\lambda\right)-\frac{1}{4}$
multiply out and solve for λ :
$0=\frac{1}{4}-\lambda+\lambda^{2}-\frac{1}{4}=\lambda^{2}-\lambda=\lambda(\lambda-1)$
So $\lambda=0$ and $\lambda=1$ are eigenvalues

Eigenvalues and Eigenvectors Algebraically

 eigenvectors of A are in the nullspace of $(A-\lambda I)$. We want non-trivial solutions, so we obtained the eigenvalues from the characteristic equation determinant $(A-\lambda I)=0$.$$
\begin{gathered}
A=\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right] \quad A-\lambda I=\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2}-\lambda & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}-\lambda
\end{array}\right] \\
\lambda=0\left[\begin{array}{ccc}
\frac{1}{2}-0 & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2}-0 & 0
\end{array}\right]=\left[\begin{array}{lll}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]
\end{gathered}
$$

Eigenvalues and Eigenvectors Algebraically

 eigenvectors of A are in the nullspace of $(A-\lambda I)$. We want non-trivial solutions, so we obtained the eigenvalues from the characteristic equation determinant $(A-\lambda I)=0$.$A=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right] \quad A-\lambda I=\left[\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{2}-\lambda & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}-\lambda\end{array}\right]$
$=0\left[\begin{array}{ccc}\frac{1}{2}-0 & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2}-0 & 0\end{array}\right]=\left[\begin{array}{lll}\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0\end{array}\right] \xrightarrow{r_{2}^{\prime}=-r_{1}+r_{2}}\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0\end{array}\right]$
$y=t$ then backsub into row $1: \frac{1}{2} x+\frac{1}{2} y=0$ so $x=-t$. Then nullspace of $A-0 /$ is $\left[\begin{array}{c}-t \\ t\end{array}\right]=t\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, i.e. $y=-x$ line
$\lambda=1$

Eigenvalues and Eigenvectors Algebraically

 eigenvectors of A are in the nullspace of $(A-\lambda I)$. We want non-trivial solutions, so we obtained the eigenvalues from the characteristic equation determinant $(A-\lambda I)=0$.$A=\left[\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right] \quad A-\lambda I=\left[\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{2}-\lambda & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}-\lambda\end{array}\right]$
$=0\left[\begin{array}{ccc}\frac{1}{2}-0 & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2}-0 & 0\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0\end{array}\right] \xrightarrow{r_{2}^{\prime}=-r_{1}+r_{2}}\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0\end{array}\right]$
$y=t$ then backsub into row $1: \frac{1}{2} x+\frac{1}{2} y=0$ so $x=-t$. Then
nullspace of $A-0 /$ is $\left[\begin{array}{c}-t \\ t\end{array}\right]=t\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, i.e. $y=-x$ line
$\lambda=1\left[\begin{array}{ccc}\frac{1}{2}-1 & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2}-1 & 0\end{array}\right]=\left[\begin{array}{ccc}-\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0\end{array}\right] \xrightarrow{r_{2}^{\prime}=r_{1}+r_{2}}\left[\begin{array}{ccc}-\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0\end{array}\right]$
$y=t, x=t$ so nullspace of $A-I$ is $t\left[\begin{array}{l}1 \\ 1\end{array}\right]$, i.e. $y=x$ line

Eigenvalues Algebraically By the Quadratic Formula

$$
A=\left[\begin{array}{ll}
3 & -2 \\
1 & -1
\end{array}\right] \quad A-\lambda I=\left[\begin{array}{cc}
3-\lambda & -2 \\
1 & -1-\lambda
\end{array}\right]
$$

characteristic equation:
$0=\operatorname{det}(A-\lambda I)=(3-\lambda)(-1-\lambda)-(-2)(1)=\lambda^{2}-2 \lambda-1$
solving for eigenvalues of $a \lambda^{2}+b \lambda+c$:
$\lambda=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{--2 \pm \sqrt{(-2)^{2}-4(1)(-1)}}{2(1)}=1 \pm \sqrt{2}$
so $\lambda=1+\sqrt{2} \approx 2.414$ and $\lambda=1-\sqrt{2} \approx-.414$

Eigenvalues Algebraically By the Quadratic Formula

$$
A=\left[\begin{array}{ll}
3 & -2 \\
1 & -1
\end{array}\right] \quad A-\lambda I=\left[\begin{array}{cc}
3-\lambda & -2 \\
1 & -1-\lambda
\end{array}\right]
$$

characteristic equation:
$0=\operatorname{det}(A-\lambda I)=(3-\lambda)(-1-\lambda)-(-2)(1)=\lambda^{2}-2 \lambda-1$
solving for eigenvalues of $a \lambda^{2}+b \lambda+c$:
$\lambda=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{--2 \pm \sqrt{(-2)^{2}-4(1)(-1)}}{2(1)}=1 \pm \sqrt{2}$
so $\lambda=1+\sqrt{2} \approx 2.414$ and $\lambda=1-\sqrt{2} \approx-.414$

Implications of the Algebra and Geometry

 It is always the case that scaling a vector by λ is the same as changing its length by λ. Why? The length of $\lambda \vec{x}$ is $\sqrt{\lambda \vec{x} \cdot \lambda \vec{x}}=\sqrt{\lambda^{2} \vec{X} \cdot \vec{x}}=\lambda \sqrt{X \cdot x}$

Implications of the Algebra and Geometry

- $\lambda=0$ is an eigenvalue of A if a line (or more) gets smushed to the origin i.e. $A \vec{x}=0 \vec{x}=\overrightarrow{0}$ has a non-trivial solution and A is not invertible

Implications of the Algebra and Geometry

- $\lambda=0$ is an eigenvalue of A if a line (or more) gets smushed to the origin i.e. $A \vec{x}=0 \vec{x}=\overrightarrow{0}$ has a non-trivial solution and A is not invertible

http://mathonline.wikidot.com/triangular-matrices
- The eigenvalues of a triangular matrix:
$0=$ determinant $(A-\lambda I)=\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right) \ldots\left(a_{n n}-\lambda\right)$ are exactly the diagonal entries of that triangular matrix

Another Example

Solve for the eigenvalues of $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]:|(A-\lambda /)|=0$

Another Example

Solve for the eigenvalues of $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]:|(A-\lambda I)|=0$

$$
0=\left|\begin{array}{cc}
0-\lambda & 1 \\
-1 & 0-\lambda
\end{array}\right|=\lambda^{2}+1 \quad \lambda=\frac{-0 \pm \sqrt{0^{2}-4(1)(1)}}{2(1)}
$$

What geometric transformation is this? Consider why nothing (aside from $\overrightarrow{0}$) realigns on the same line through the origin.

Another Example

Solve for the eigenvalues of $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]:|(A-\lambda I)|=0$
$0=\left|\begin{array}{cc}0-\lambda & 1 \\ -1 & 0-\lambda\end{array}\right|=\lambda^{2}+1 \quad \lambda=\frac{-0 \pm \sqrt{0^{2}-4(1)(1)}}{2(1)}$
What geometric transformation is this? Consider why nothing (aside from $\overrightarrow{0}$) realigns on the same line through the origin.
$\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]=\left[\begin{array}{cc}\cos \left(-\frac{\pi}{2}\right) & -\sin \left(-\frac{\pi}{2}\right) \\ \sin \left(-\frac{\pi}{2}\right) & \cos \left(-\frac{\pi}{2}\right)\end{array}\right]$

Probability, Markov, or Stochastic Matrix

A basketball team has a 60% probability of winning their next game if they have won their previous game but only a 30\% probability of winning their next game if they have lost their previous game. Let $\vec{x}_{k}=\left[\begin{array}{l}\% \text { chance of winning game } k \\ \% \text { chance of losing game } k\end{array}\right]$.
Then $\vec{x}_{k+1}=\left[\begin{array}{ll}.6 & .3 \\ .4 & .7\end{array}\right] \vec{x}_{k}$
What are the eigenvalues?

Probability, Markov, or Stochastic Matrix

A basketball team has a 60% probability of winning their next game if they have won their previous game but only a 30% probability of winning their next game if they have lost their previous game. Let $\vec{x}_{k}=\left[\begin{array}{c}\% \text { chance of winning game } k \\ \% \text { chance of losing game } k\end{array}\right]$.
Then $\vec{x}_{k+1}=\left[\begin{array}{ll}.6 & .3 \\ .4 & .7\end{array}\right] \vec{x}_{k}$
What are the eigenvalues?
$0=\left|\begin{array}{cc}.6-\lambda & .3 \\ .4 & .7-\lambda\end{array}\right|=(.6-\lambda)(.7-\lambda)-(.3)(.4)$
$=\lambda^{2}-1.3 \lambda+.3=(\lambda-1)(\lambda-.3)$
The eigenspace corresponding to the larger magnitude eigenvalue is especially useful! Here $\lambda=1$ dominant

$$
\left[\begin{array}{ccc}
.6-1 & .3 & 0 \\
.4 & .7-1 & 0
\end{array}\right]
$$

Probability, Markov, or Stochastic Matrix

A basketball team has a 60% probability of winning their next game if they have won their previous game but only a 30% probability of winning their next game if they have lost their previous game. Let $\vec{x}_{k}=\left[\begin{array}{c}\% \text { chance of winning game } k \\ \% \text { chance of losing game } k\end{array}\right]$.
Then $\vec{x}_{k+1}=\left[\begin{array}{ll}.6 & .3 \\ .4 & .7\end{array}\right] \vec{x}_{k}$
What are the eigenvalues?
$0=\left|\begin{array}{cc}.6-\lambda & .3 \\ .4 & .7-\lambda\end{array}\right|=(.6-\lambda)(.7-\lambda)-(.3)(.4)$
$=\lambda^{2}-1.3 \lambda+.3=(\lambda-1)(\lambda-.3)$
The eigenspace corresponding to the larger magnitude eigenvalue is especially usefu!! Here $\lambda=1$ dominant

$$
\left[\begin{array}{ccc}
.6-1 & .3 & 0 \\
.4 & .7-1 & 0
\end{array}\right] \xrightarrow{r_{2}^{\prime}=r_{1}+r_{2}}\left[\begin{array}{ccc}
-.4 & .3 & 0 \\
0 & 0 & 0
\end{array}\right] \quad t\left[\begin{array}{c}
\frac{3}{4} \\
1 \\
1
\end{array}\right] \text { i.e. } y=\frac{4}{3} x
$$

$\lambda=1$ in Probability, Markov, or Stochastic Matrix

 Here $\lambda=1$ is especially useful since that leads to a steady state in the long run (we'll see more about why in 5.6):$A \vec{x}=1 \vec{x}=\vec{x}$ for $\vec{x}=t\left[\begin{array}{l}\frac{3}{4} \\ 1\end{array}\right]$ in the eigenspace for $\lambda=1$
$\lambda=1$ in Probability, Markov, or Stochastic Matrix Here $\lambda=1$ is especially useful since that leads to a steady state in the long run (we'll see more about why in 5.6):
$A \vec{x}=1 \vec{x}=\vec{x}$ for $\vec{x}=t\left[\begin{array}{c}\frac{3}{4} \\ 1\end{array}\right]$ in the eigenspace for $\lambda=1$
Also $\frac{3}{4} t+t=1$ as we either win or lose
$\lambda=1$ in Probability, Markov, or Stochastic Matrix Here $\lambda=1$ is especially useful since that leads to a steady state in the long run (we'll see more about why in 5.6):
$A \vec{x}=1 \vec{x}=\vec{x}$ for $\vec{x}=t\left[\begin{array}{l}\frac{3}{4} \\ 1\end{array}\right]$ in the eigenspace for $\lambda=1$
Also $\frac{3}{4} t+t=1$ as we either win or lose so $\frac{7}{4} t=1$ and $t=\frac{4}{7}$
Thus in the long run we stabilize to $\left[\begin{array}{l}3 \\ 7 \\ 4 \\ 7\end{array}\right] \sim\left[\begin{array}{l}.43 \\ .57\end{array}\right]$

$\lambda=1$ in Probability, Markov, or Stochastic Matrix

 Here $\lambda=1$ is especially useful since that leads to a steady state in the long run (we'll see more about why in 5.6):$A \vec{x}=1 \vec{x}=\vec{x}$ for $\vec{x}=t\left[\begin{array}{c}\frac{3}{4} \\ 1\end{array}\right]$ in the eigenspace for $\lambda=1$
Also $\frac{3}{4} t+t=1$ as we either win or lose so $\frac{7}{4} t=1$ and $t=\frac{4}{7}$
Thus in the long run we stabilize to $\left[\begin{array}{l}3 \\ 7 \\ 4 \\ 7\end{array}\right] \sim\left[\begin{array}{l}.43 \\ .57\end{array}\right]$

[^0]https://doi.org/10.1137/050623280
The $\$ 25,000,000,000$ Eigenvector: The Linear Algebra behind Google

[^0]: You have requested the following content:
 SIAM Review, 2006, Vol. 48, No. 3 : pp. 569-581
 The $\$ 25,000,000,000$ Eigenvector: The Linear Algebra behind Google Kurt Bryan and Tanya Leise

