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IN-CLASS CONNECTIONS 

 
The determinant of a matrix is the main 

topic from MAT 2240 that will aide in the 
understanding of research on dark matter 
accretion. Per the course lectures, not every 
matrix has a determinant.[1]  In order for a 
determinant to be calculated from a given 
matrix, the matrix must be square 
(dimensions n x n).[1]  

 
 
 

 
Figure 1. A generic matrix with dimensions 2 x 2 fits 
the criteria for calculating a determinant.  
 

A standard determinant calculation for a 
generic matrix, such as Figure 1, follows the 
form of (ad-bc).[1] This is also the product of 
the terms in the off-diagonal subtracted from 
the product of the terms on the main 
diagonal. For matrices of higher dimensions, 
other methods are needed for determinant 
calculation. The method of Laplace 
expansion works for determinant calculation 
for matrices of any dimension.[1] 

 

 
Figure 2. A Laplace expansion for a generic 3 x 3 
matrix. This method holds for matrices of higher 

dimensions, but for the purposes of this paper, a 3 x 3 
example will suffice.[2]  
 

The Laplace expansion is performed by 
expanding along a certain row or column of a 
matrix. The first term in the row or column 
(term i,j) is multiplied by the determinant of 
the matrix with the ith row and jth column 
deleted, as seen in Figure 2. This product is 
then summed with the next term in the 
original row/column previously decided on. 
Figure 2 shows Laplace expansion along the 
first column of a 3 x 3 matrix. For a triangular 
matrix, (a matrix with all zeroes above or 
below the main diagonal) the determinant is 
simply the products of the terms on the main 
diagonal.[1]  

 
Values of determinants can describe 

certain things about matrices, like 
invertibility, for example. A matrix with a 
nonzero determinant is invertible.[1] Because 
a matrix must be square in order for a 
determinant to be taken, there are 
implications about the vectors within the 
square matrix. From the class-popular 
Theorem 8, the matrix invertibility theorem, 
we also know that a matrix with a nonzero 
determinant has linearly independent vectors 
and that those vectors span the entire space 
which they occupy.[1] The determinant of a 2 
x 2 matrix yields the area of the 
parallelogram spanned by the two vectors in 
the matrix. The determinant of a 3 x 3 matrix 
yields the volume of the parallelepiped cast 
by the three vectors.[1] One can see how 
determinants provide useful information 
when conducting experiments that involve 
mass or density distributions, such as the one 



discussed in the proceeding sections of this 
paper. In-class examples of determinants, 
their meanings, and calculations can be found 
in Exercise 3.3, as well as in Problem Set 4.  

 
Determinants provide insight into another 

intrinsic property of matrices: eigenvectors 
and eigenvalues. Eigenvalues of a matrix are 
values that satisfy the following equation: 
 

 
In equation (1), det is the determinant 

function, A is the matrix whose eigenvalues 
are being calculated, λ represents the 
eigenvalues(s) to be calculated, and I 
represents the identity matrix. This is called 
the characteristic equation, and is used to 
determine eigenvalues for square matrices.[1] 
Eigenvalues are unique in that they make 
scalar multiplication equivalent to matrix 
multiplication. This unique property is shown 
by equation (2). 

 
 

Equation (2) highlights the uniqueness of 
eigenvalues. Eigenvalues have corresponding 
eigenvectors that hold special properties of 
their own. Eigenvectors are vectors in space 
that remain unchanged when the matrix being 
studied is scaled by one of its eigenvalues.[3] 
Per the course material, eigenvectors and 
eigenvalues can be used to describe 
population trends. The familiar “fox and 
rabbit” problem hinges entirely on 
eigenvectors, their corresponding 
eigenvalues, and how the population trends 
according to both of those combined. These 
population trends can be described in an 
eigenvector decomposition equation, as in 
equation 3.  

 

 
In equation 3, a1 and a2 are constants that 

are determined from the initial conditions of 
the population or trending system. The λ 

variables are the eigenvalues of the 
population matrix, and the e vectors are the 
corresponding eigenvectors to their specific 
eigenvalues. The way that this mathematical 
system predicts trend is by taking limits at 
infinity. When the k term is allowed to 
approach infinity, long-term behavior for the 
system in question becomes discernible. If 
the eigenvalues of the system are not equal, 
one value will be inherently dominant over 
the other.[1] This dominant eigenvalue forces 
the system to trend toward its corresponding 
eigenvector asymptotically in most cases, and 
rates of increase or decrease can be 
determined from then on.[1] Systems will 
grow, stabilize, or die off in accordance to 
their dominant eigenvalue. Eigenvalues with 
absolute values less than one will die off. 
Thos equal to one will stabilize, and those 
greater than one will see overall growth. 
Eigenvalues are not always real values. Some 
matrices, like most rotation matrices, have 
complex eigenvalues.  

Eigenvalues have another important use 
when considering objects in three 
dimensions. When considering surfaces in 
three-space, there exists a special matrix 
called the Hessian matrix, which is a matrix 
whose entries is all the partial derivatives for 
a certain multivariate function.[4] By 
calculating the eigenvalues of a Hessian 
matrix, one can discern certain points on the 
surface in question to be maxima, minima, or 
saddle points.[4] Such information can prove 
to be extremely useful when considering 
surfaces in three dimensions, such as galaxies 
or masses on a cosmological scale. The 
importance of the Hessian matrix hinges 
entirely on the process of calculating 
determinants, eigenvalues, and, in the case of 
this experiment summary, understanding how 
eigenvalues and eigenvectors influence the 
trajectory of a trending system. Without these 
core topics covered in MAT 2240, this sort of 
large-scale cosmological study could never 



have yielded any useful or practical 
information. 

 
APPENDIX A 

 
Relevant Examples from the Course 

 

 

 
Figure 3. A mathematics program like Maple allows 
almost instantaneous computation of determinants of 
matrices with larger dimensions than the familiar  2x2 
or 3x3. This example, although relatively simplistic, is 
conceptually crucial to understanding the dark matter 
accretion study.[5] This sample determinant calculation 
was taken from the first question in Problem Set 4.  
 

 

 

Figure 4. This sample eigenvector calculation is the 
beginning of an eigenvector decomposition equation. 
Although the equations used in the dark matter study 
are for more complex, the same ideas apply.[5] 
Discussion in class focused mainly on the trajectory of 
populations in the long term, given a few starting 
parameters. In the accretion study, trajectory diagrams 
are vital to understanding the final results. For 
example, as we have seen before in these sorts of 
problems, eigenvalues have their unique, 
corresponding eigenvectors. The same holds true in 
the dark matter study. The eigenvectors calculated, 
however, represents lines of slow or rapid collapse rate 
of matter instead of trending population.[5] This 
example problem was taken from the third question in 
Problem Set 4.  

 
 

 
 
 

Figure 5. This is an extension of the same sample 
problem as that in Figure 4. This image highlights 
another crucial concept of eigenvectors. The cross 
points represent how the hypothetical population 
trends with time. There is an observable, asymptotic 
trend to the eigenvector in quadrant 1. This image 
shows how a system’s behavior can trend toward what 
is called its “dominant” eigenvector, in most cases. 
This concept of trajectory proves to be the focal point 
of understanding the results from the dark matter 
accretion study.[5] 
 

Most of the in-class connections for this 
project stemmed from material covered in the 
last few weeks. Although computable by-
hand, many of the sample problems and 
exercises can be done in a computational 
software, such as Maple or Mathematica. 
Using such a software is favorable for the 
sake of time, but it is important to understand 
the mechanics, algorithms, and concepts that 
go into these computations.  

 
 
 



 
EXTENSION OF CLASS MATERIAL 
 
In a study conducted by Xi Kang and Peng 

Wang of the University of the Chinese 
Academy of Science, linear algebra was used 
in a familiar (to us) fashion to understand 
natural phenomena on a macroscopic level. 
This research was done via computer 
simulation using the WMAP7 data* as 
parameters for the virtual cosmos. Two 
simulations were run simultaneously. One 
simulation was a low-resolution, low mass 
environment. The other was the opposite: a 
high resolution, high mass environment. The 
advantage of running dual simulations as 
described above, is that multiple concurrent 
runs allows data to be taken for both high-
mass and lower-mass systems, two common 
things that exist in the cosmos.[5] Studies of 
our own galaxy have shown that the Milky 
Way’s rotation speed is too fast given its 
measurable amount of mass.[6] This implies 
that there is matter present that is not being 
detected, hence the term “dark matter”. The 
simulation used in this study accounts for this 
dark matter by using previously-theorized 
algorithms.  

 

 
 
Figure 6. This screenshot from the study’s simulation 
efforts highlights the calculations done by the 
simulation software. The large (red) circles in the 
middle represent the virial radius of the collapsing 
system, while the smaller circles (blue) represent the 
dark matter halos forming about the collapsing mass. 
Some small circles appear to be inside the red circles 
due to this image being a two dimensional 
representation of a three dimensional study.[5] 
 

 

 
This experimental study of dark matter 

hinges entirely on the Zel’dovich theory. This 
theory states that when matter is collapsing, 
the halo will tend to when of several 
cosmological classes of mass distribution, 
depending on the eigenvalues of its Hessian 
matrix.[5] The Hessian matrix, in this instance 
is the matrix filled with all the partial 
derivatives of a function that represents the 
mass or density distribution being studied. 
The number of positive eigenvalues indicates 
what type of mass the halo will condense 
to.[5] For example, one positive eigenvalue 
leads to a filament, two positive eigenvalues 
leads to a sheet, and no positive eigenvalues 
leads to a cluster.[5] 

 

 
 

Figure 7. This image shows a trend of collapsing 
cosmological mass. This picture shows examples of 
sheets, filaments, clusters, and voids.[7]  Available at: 
http://www.astronomynotes.com/galaxy/filaments-
uchicago.jpg  

 
The final results of this extended computer 

simulation established some relationship 
between collapsing masses, the dark matter 
surrounding them, and the eigenvectors of the 
whole system. For example, after accretion 
has nearly completed, it was seen that the 
major axis of the dark matter halo was well 
aligned with the least-compressed direction 
of the entire system (the eigenvalue with the 
smallest magnitude).[5] Likewise, it was also 



seen that subhalos were more aligned with 
the major axis of the host halo when the 
system was more massive. This has 
interesting implications into the idea of 
dominant eigenvectors. In the more massive 
systems, the alignment of matter halos was 
more linear, i.e., the eigenvalue with the 
largest magnitude was dominant. However, in 
the less massive systems, the alignment of 
matter halos was closer to perpendicular, 
compressing along the eigenvector with the 
weakest corresponding eigenvalue.[5] The 
study calls this the “fast collapse vs. slow 
collapse”, which makes sense conceptually. If 
a system has more mass, it will collapse 
faster and more uniformly then a system with 
less mass. 

 
APPENDIX B 

 
*WMAP7 was an experiment that 

successfully mapped out an estimated mass 
distribution on a universal scale. This was 
done by a space probe that emitted radio 
waves to detect any sort of heat coming from 
matter scattered throughout the universe.  
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