Elementary Row Operations

- (Interchange) Swap two equations
- (Scaling) Multiply an equation by a non-zero constant
- (Replacement) Replace one row by the sum of itself and a multiple of another row [like $r_{2}^{\prime}=-3 r_{1}+r_{2}$]
Gaussian Elimination (Echelon Form): Os below the diagonal
- Save the 1 st term in eq 1 and use it to eliminate all the other like-terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$
- Ignore eq 1 and use the $2 n d$ term in eq 2 to eliminate all the like-terms below it.
- ... Os below the diagonal (interchange as needed)

Critical Analysis-Solutions

- [0 00 ... 0 nonzero] inconsistent, 0 concurrent solutions.
- If consistent use pivots-any variables without pivots are free in a parametrization. Last row with a pivot (non-zero coefficients) will yield $x_{k}=\ldots$, and then solve for it and rest using back substitution and any free variables

Continuing to Gauss-Jordan/ReducedRowEchelon form: Os or 1s on the main diagonal and 0 coefficients elsewhere

- Scale the last row with non-zero coefficients so that the diagonal entry is a 1.
- Use the last non-zero equation to eliminate the spots above it
- Repeat these steps using the second last non-zero equation.
- Read off the solutions from the pivots and the equal columns
$\left[\begin{array}{rcr}1 & -1 & -11 \\ 0 & 1 & 25 \\ 0 & 0 & 0\end{array}\right]$ Gaussian or row echelon
$\left[\begin{array}{rcr}1 & 0 & 14 \\ 0 & 1 & 25 \\ 0 & 0 & 0\end{array}\right]$ Gauss-Jordan or reduced row echelon

