
Finding Determinants Through Programming

Wyatt Andresen

1 Review of Related Topics

1.1 Determinants

Definition. The determinant is a value that can be found from any square matrix, and is denoted as
det(A).

1.1.1 2 × 2 and 3 × 3 Matrices

Two important determinants are for 2 × 2 and 3 × 3 matrices.
Suppose that:

A2× 2 =

[
a b
c d

]
and A3× 3 =

a b c
d e f
g h i

 .

Then,

det(A2× 2) = ab− cd and

det(A3× 3) = (aei + bfg + cdh)− (gec + hfa + idb).

1.1.2 Larger Matrices and Laplace Expansion

Determinants larger than this are less simple to find. In these cases, Laplace expansion is a method
that may be used to find the determinant.
Suppose that:

An×n =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 .

Laplace expansion may begin on any row or column in the matrix. Supposing we began with the column
of a11, the first expansion would produce:

det(An×n) =
n∑

i=1

ai1 × (−1)i+1 × det(A′n×n)

where ai1 is an entry in the column and A′n×n is the matrix resulting from the removal of that row and
column. The determinant of A′n×n may then also be found, either through continued Laplace expansions
or, if it is 2 × 2 or 3 × 3, the associated equations.

1



Example. We will find the determinant of a 3 × 3 matrix via Laplace expansion.
Suppose that:

A3× 3 =

1 4 7
2 5 8
3 6 9


Then, det(A3× 3)

=
3∑

i=1

ai1 × (−1)i+1 × det(A′2× 2)

= a11 × (−1)1+1 × det(A′2× 2) + a21 × (−1)2+1 × det(A′2× 2) + a31 × (−1)3+1 × det(A′2× 2)

= 1× 1× det(

[
5 8
6 9

]
) + 2×−1× det(

[
4 7
6 9

]
) + 3× 1× det(

[
4 7
5 8

]
)

= 1× 1× ((5)(9)− (8)(6)) + 2×−1× ((4)(9)− (7)(6)) + 3× 1× ((4)(8)− (7)(5))

= (−3)− 2× (−6) + 3× (−3)

= 0

1.1.3 Determinants of Triagangular Matrices

Definition. A triangular matrix is a matrix that is all 0s below the diagonal. The determinant of a
triangular matrix is always the product of the elements of the diagonal.

Example. We will find the determinant of a triangular 4 × 4 matrix via Laplace expansion.
Suppose that:

A4× 4 =


1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10


The zeros in column one will cause the Laplace expansion for column one to only include the first
term in the expansion. So, det(A4× 4)

= 1× (−1)1+1 × det(

5 6 7
0 8 9
0 0 10

) + 0s

The zeroes below column one in our new matrix will cause the same thing to occur. Thus:

det(

5 6 7
0 8 9
0 0 10

) = 5× (−1)1+1 × det(

[
8 9
0 10

]
) + 0s

And the determinant of our final matrix is:

det(

[
8 9
0 10

]
) = (8)(10)− (9)(0) = (8)(10)

2



Now, if we put it all together, det(A4× 4)

= 1× 1× 5× 1× 8× 10

or,
= 1× 5× 8× 10

which is the same as our original diagonal.

1.1.4 Properties of Determinants

Multiplication The determinant of a product is the product of the determinants:

det(A.B) = det(A)× det(B)

Inverses The product of the determinants of a matrix and its inverse is the determinant of the identity
matrix. Because the identity matrix is a triangular matrix with all ones along its diagonal, we know
that det(I) = 1. A result of this fact is that if A−1 exists, then det(A) 6= 0.

det(A)× det(A−1) = det(AA−1) = det(I) = 1

Row Operations and Matrix Transformation

Row Replacement / Shear The shear matrix below performs a row replacement. Row replace-
ments, and thus shears, maintain the determinant of the matrix (area/volume).[

1 2
3 4

]
r′2=−3r1+r2−−−−−−−→ 1 0
−3 1


[
1 2
0 −2

]

det(

[
1 2
3 4

]
) = −2 and det(

[
1 2
0 −2

]
) = −2

Scaling / Stretching The stretch matrix below performs a scale on row one. Scaling and stretch-
ing do not maintain the determinant, but multiply it by the scaling factor.[

1 2
3 4

]
r′1=3r1−−−−−→3 0
0 1


[
3 6
3 4

]

det(

[
1 2
3 4

]
) = −2 and det(

[
3 6
3 4

]
) = −6

Interchanging / Reflecting The reflection below causes row one and two to interchange. The
magnitude of the determinant is preserved, but the sign is flipped.[

1 2
3 4

]
r1↔r2−−−−−→0 1
1 0


[
3 4
1 2

]

det(

[
1 2
3 4

]
) = −2 and det(

[
3 4
1 2

]
) = 2

3



2 Extension

The following section showcases the creation of a Java program capable of computing the determinant
of any square matrix.

2.1 Motivation

Electronic mathematics tools like Maple have slowly become more and more useful, particularly as I have
progressed into and learned of more lengthy computations. Due to my dual interest in mathematics and
computer science, it was natural for me to want to see how I could combine the two together myself.
The recursive nature of finding determinants through Laplace expansion made for what I perceived
would be an interesting program to create.

2.2 Implementation

The previously mentioned recursive nature of determinants made it natural to aim for a recursive
implementation with the program. A looping implementation was a possibility, but the recursive im-
plementation is more representative of determinant calculation and more intuitive.

The code is commented to provide clear indications of each step that is performed in the calculation.
Overarchingly, the code is split into four methods; main which gets the ball rolling, findDeterminant
which makes most of the magic happen, and two helper methods deleteRowAndColumn and printDe-
terminant. deleteRowAndColumn generates and returns the matrix after the passed column and row
are deleted. printDeterminant simply prints the output in an easily readable format.

2.3 Java Code

//* Determinant.java - finds the determinant

* of a matrix of pretty much any size.

* Simply enter the (square) matrix into

* the matrix array below.

*

* @author Wyatt Andresen

* @version 6/26/17

*

*/

import java.lang.*;

public class Determinant

{

/* main - Declares the matrix whose determinant

* will be found, obtains the determinant by

* calling the findDeterminant method, and then

* prints the determinant by calling the

* printDeterminant method

*

* @param: args - command line args

*/

4



public static void main(String[] args)

{

//Defines some example matrices

//whose determinants may be found

//Must be square

int[][] matrix2x2 = {{1,2},

{3,4}};

int[][] matrix3x3 = {{1,4,7},

{2,5,8},

{3,6,9}};

int[][] matrix4x4 = {{1,2,3,4},

{0,5,6,7},

{0,0,8,9},

{0,0,0,10}};

int[][] matrix5x5 = {{5,2,0,0,-2},

{0,1,4,3,2},

{0,0,2,6,3},

{0,0,3,4,1},

{0,0,0,0,2}};

//Finds and prints the determinant of

//the 2x2 matrix

int determinant = findDeterminant(matrix2x2);

printDeterminant(matrix2x2, determinant);

//Finds and prints the determinant of

//the 3x3 matrix

determinant = findDeterminant(matrix3x3);

printDeterminant(matrix3x3, determinant);

//Finds and prints the determinant of

//the 4x4 matrix

determinant = findDeterminant(matrix4x4);

printDeterminant(matrix4x4, determinant);

//Finds and prints the determinant of

//the 5x5 matrix

determinant = findDeterminant(matrix5x5);

printDeterminant(matrix5x5, determinant);

}

/* findDeterminant - finds and returns the

* determinant of a matrix

*

* @param: matrix - the matrix whose determinant

* will be found

5



* @return: the determinant of the matrix

*/

public static int findDeterminant(int[][] matrix)

{

//Initializes size which holds the

//length of the matrix

int size = matrix.length;

//Initializes determinant to 0

int determinant = 0;

//Perform Laplace expansion on the

//matrix to find the determinant

for (int i = 0; i < size; i++)

{

//If size is less than two,

//continue to expand

if (size > 2)

{

//Obtains the matrix whose

//determinent will need to

//be found next

int[][] nextMatrix = deleteRowAndColumn(i, 0, matrix);

//Laplace expansion

determinant += matrix[i][0] * Math.pow(-1, i)

* findDeterminant(nextMatrix);

}

//If size is equal to two,

//find the determinant

else if (size == 2)

{

determinant = matrix[0][0] * matrix[1][1]

- matrix[0][1] * matrix[1][0];

}

}

return determinant;

}

/* deleteRowAndColumn - deletes the passed

* row and column.

*

* @param: row - the row to be deleted

* @param: column - the column to be deleted

* @return: the new matrix with the passed in

* row and column deleted

*/

public static int[][] deleteRowAndColumn(int row, int column,

int[][] matrix)

6



{

int oldSize = matrix.length;

int newSize = matrix.length - 1;

//Declares a temporary matrix to be used

//to delete the correct row

int[][] tempMatrix = new int[newSize][oldSize];

//Adds the rows before the row to be deleted

for (int i = 0; i < row; i++)

{

for (int j = 0; j < oldSize; j++)

{

tempMatrix[i][j] = matrix[i][j];

}

}

//Adds the rows after the row to be deleted

for (int i = row; i < newSize; i++)

{

for (int j = 0; j < oldSize; j++)

{

tempMatrix[i][j] = matrix[i+1][j];

}

}

//Declares the now correctly sized matrix

//that will be returned

//The column deletion will be performed

//on this matrix

int[][] newMatrix = new int[newSize][newSize];

//Adds the columns before the column to be deleted

for (int i = 0; i < newSize; i++)

{

for (int j = 0; j < column; j++)

{

newMatrix[i][j] = tempMatrix[i][j];

}

}

//Adds the columns after the column to be deleted

for (int i = 0; i < newSize; i++)

{

for (int j = column; j < newSize; j++)

{

newMatrix[i][j] = tempMatrix[i][j+1];

}

}

//Testing code that prints every returned matrix

/*for (int i = 0; i < newMatrix.length; i++)

{

7



for (int j = 0; j < newMatrix.length; j++)

{

System.out.print(newMatrix[i][j] + " ");

}

System.out.print("\n");

}

System.out.println();*/

return newMatrix;

}

/* printDeterminant - prints the determinant

*

* @param: matrix - the matrix whose

* determinant was found

* @param: determinant - the determinant of

* the matrix

*/

public static void printDeterminant(int[][] matrix, int determinant)

{

//Initialization of size, which holds

//the size of the matrix

int size = matrix.length;

//Start of the print determinant string

String print = "The determinant of the " + size + "x" + size

+ " matrix: ";

//Declaration of numSpaces (which holds

//the length of the previous line) and

//spaces (which is filled with a blank

//space equal to the size of the previous

//line

int numSpaces = print.length();

String spaces = "";

for (int i = 0; i < numSpaces; i++)

{

spaces += " ";

}

//Adds the first row of the matrix

for (int i = 0; i < matrix.length; i++)

{

print += matrix[0][i] + " ";

}

//Adds the determinant statment

print += "is: " + determinant + "\n" + spaces;

8



//Adds the remaining rows of the matrix

for (int i = 1; i < matrix.length; i++)

{

for (int j = 0; j < matrix.length; j++)

{

print += matrix[i][j] + " ";

}

print += "\n" + spaces;

}

//Prints the whole

System.out.println(print);

}

}

2.4 Output

The below output has been copied directly from the terminal. Additionally, some of these can be
compared to the determinants we computed by hand in Section 1.

The determinant of the 2x2 matrix: 1 2 is: -2

3 4

The determinant of the 3x3 matrix: 1 4 7 is: 0

2 5 8

3 6 9

The determinant of the 4x4 matrix: 1 2 3 4 is: 400

0 5 6 7

0 0 8 9

0 0 0 10

The determinant of the 5x5 matrix: 5 2 0 0 -2 is: -100

0 1 4 3 2

0 0 2 6 3

0 0 3 4 1

0 0 0 0 2

2.5 Conclusion

Overall, this project has enforced and broadened my understanding of determinants and their calcula-
tion. The recursive nature of their calculation is of particular interest to me, and made for an interesting,
challenging coding project that caused me to more deeply investigate and understand them.

9


