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What material that we learned in this course helps us understand Markov 
Chains?
The Matrix Equation Ax = b
       Fundamentally, the matrix equation Ax = b helps us understand how Markov chains work. Recollect 
the definition of this equation: If A is an m x n matrix, with columns , ... , and if x is in , then the 
product of A and x, denoted by Ax, is the linear combination of the columns of A using the corresponding

entries in x as weights; that is, Ax =   = + + ... +   In other words,the 

product Ax makes sense only when the columns of A equal the number of entries in x. Furthermore, b is a
m x 1 resultant column vector. 
       Next, we discussed how a system of linear equations could be represented in three different but 
equivalent ways: If A is an m x n matrix, with columns , ... , and if x is in the matrix equation
Ax = b has the same solution set as the vector equation + + ... +  which in turn has the 

same solution set as the system of linear equations whose augmented matrix is . This
is a very important theorem for constructing and computing a mathematical model. This allows us to 
switch to either of these methods when convenient for computational purposes. 
       A useful fact we learned was that the equation Ax = b has a solution if and only if b is a linear 
combination of the columns of A. Consider the equation when A is  (the 2 x 2 identity matrix): 

This example is the most obvious in explaining the 

aforementioned fact. As we can see, is a scalar multiple of  the columns of   

       Remember one of the ways to compute the product Ax is the row-vector rule, commonly known as 

the dot product. Consider the example:  Let's first compute this problem by using the dot 

product. Each entry in the resultant b is the sum of the products of the ith row in A and and the entries of

x. Thus, 
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is our first entry of b by the dot product method. In the same 

way, the second entry is computed as:  By the definition Ax = b, 

 =  However, this is only applicable when 

we want to know if a specific vector is a resultant of the matrix equation.
      The properties of the matrix-vector product Ax are that the product satisfies addition and sclar 
multiplication. Specifically, If A is an m x n matrix, u and v are vectors in , and c is a scalar, then: A(u 
+ v) = Au + Av and A(cu) = c(Au). 
      So far, my examples have focused on square n x n matrices. In general, If A is an n x n matrix, and x 
and b are n x 1 vectors, then Ax = b has 0, 1, or infinite solutions. This fact has much to do with the 
number of pivots in the coefficient matrix A. If the matrix A has n pivots, then the columns span  and 
we have a unique solution b.  If A The matrix equation can have no solutions (0 solutions) if the 
augmented matrix Ax = b has inconsistency (i.e. in Gauss-Jordan form, we have a row such as [0 0 0 ...  
n]. 
      We learned that we can solve for a general b for Ax = b. This was achieved by augmenting a matrix

A with a general b, and subsequently using Gaussian elimination. Consider the example: 

The fourth entry in the fourth column (the equal column) must equal zero in order for the system to be 
consistent. In other words, only some solutions will satisfy  the system because 

 This is a graphical description of b, namely a plane in  through the origin.
This description is equal to the Span of A where each b is a linear combination of the columns of A.
Tenuous Relationship to Linear Transformations
    We learned that the matrix equation Ax = b is not necessarily connected with linear combinations of 
vectors. Linear transformations consider a matrix A to act on a vector x by multiplication to produce a 
new vector Ax.  This is notated as: x 0Ax. Consider this example: 
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In this perspective, we say that A acted on the vector  and

transformed it into b, a vector in . Thus, solving the matrix equation Ax = b consists of finding all the 
vectors in  that are transformed into the vector b in  by the multplication of A, an m x n matrix. 
Finding Eigenvalues
We learned that eigenvectors are nontrivial solution vectors of the equation Ax x, where A is an n x n 

A. We can determine if
a specified number (other than the trivial solution) is an eigenvalue of A by concluding if that number 
satisfies det(A I)x = 0. One example that we saw presented us with a matrix A, and asked us to determine
if 7 was an eigenvalue of A. We set up the equation Ax = 7x. Then we subtracted 7x from both sides to 
arrive at Ax-7x = 0. We then applied the mulitplicative identity property: Ax-7Ix = 0. We then distribute x 

out so that (A-7I)x = 0. Thus,  - Finally, we compute the determinant, 

hoping that it equals zero. det(A)= (-6)(-5) - (6)(5)= 30-30= 0. Thus, 7 must be an eigenvalue of the 
matrix A. 
Discrete Dynamical Systems
Our study of predator-prey systems have an application to Markov chains because we used these systems
to determine long-term behavior. As we learned, a discrete dynamical system is a sequence of vectors 

related to one another by a square matrix A  such that x  = A for k = 0, 1, 2, ..., where k  
refers to a specific unit of time, namely years. One example we covered dealt with spotted owls and 
wood rats in the redwood forests of California. The difference equations were: 

and  We learned that represented the 
survival rate of owl per month when no squirrels were available for food. In contrast, with no owls as 
predators, the (1.2)  represents the 20% monthly growth of the squirrel population. The  
represented the growth of the owl population when the squirrel population was plentiful. Lastly, 

 measures the mortality rate of wood rats when they are hunted down by owls. The parameter p 
is the predation parameter. In Problem Set #4, we set this parameter to .5 to observe the long-term 
behavior of the spotted owls and squirrels. We entered these difference equations into matrices and 
solved for their eigenvalues and eigenvectors. Our results showed that the populations both declined 
over time, with the squirrels dying off first and then the owls.
Let p = .5.
Ex5a:= Matrix([[(4/10),(3/10)],[(-1/2),(12/10)]]);

Eigenvectors(Ex5a);

The eigenvector decomposition is 
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.  approaches 0 a

both approach 0, though the squirrels will perish more quickly than the owls (Lay, 

What are Markov Chains?
     Markov chains are trials which test whether vectors have either remained in the same state or have 
changed states. A Markov chain uses a square matrix called a stochastic matrix  comprised of
probability vectors. A probability vector is a vector with postive coefficients that add up to 1. A 
Markov chain, by notation, is a sequence of probability vectors and a stochastic matrix P,
such that  = P  etc. Using a difference equation, we can represent the Markox chain as 
x  = Px  for k= 0, 1, 2, .... Because the stochastic matrix acts on the probability vectors, it is 
sometimes referred to as a transition matrix, or Markov matrix.

    Consider the stochastic matrix P = . This matrix is what is known as a regular stochastic 

matrix. What this means is that the matrix has strictly positive entries. Now, consider how the entries in 
both of the column probability vectors equal to 1. Because of this property, this matrix is considered a
left stochastic matrix. However, consider how the entries in each of the row vectors equal 1 as well. 
Thus, the matrix is also a right stochastic matrix. When a stochastic matrix has both of these 
characteristics, it is what is known as a doubly stochastic matrix.  
     Sometimes, when a stochastic matrix acts upon a vector w, the vector remains in the same state (w). 
Notation-wise, this is shown as Pw = w.  What this means is that when the system is in state w, there is 
no change in the system from one calculation to the next. This vector w is what is known as the steady-
state or equilibrium vector.  Every stochastic matrix has a steady-state vector. 
     To find the steady-state vector of a given stochastic matrix A, we solve the equation Pw = w. We 
subtract w from both sides to arrive at Pw - w = 0. Next, we apply the multiplicative identity property:
Pw-Iw = 0. Finally, we distribute out the w: (P-I)x = 0. Let's apply this to the matrix P in the 

aforementioned example. (P-I)x = x = x = 0. Now, we row reduce the 

augmented matrix [ A 0 ]. 

We find that  and is free. Thus, the general solution is . It follows that one of our 

steady-state vectors is then (when  = 1). 



     A very important application, if the not the most important, is that Markov chains can be used to 
predict the future in the long-term. A very interesting feature is that for each part of the sequence, the 
subsequent state relies only on the immediately previous vector. In other words, it does not rely on all of 
the previous state vectors, only the state vector that anteceded it. This is reflected in the following 
theorem: "If P is an n x n regular stochastic matrix, then P has a unique steady-state vector q. Further, if 

 is any initial state and = P  for k = 0, 1, 2, ..., then the Markov chain { } converges to q as
" (Lay ,259). 

Markov Chains in Actuarial Science
Bonus-Malus Systems (BMS) are used throughout the insurance market, though most conspicuously in 
the auto insurance sector. Bonus-Malus in Latin means "good-bad." In the context of insurance, it is a 
system that is used to reward or penalize driving classes based on an annual claims history. The entries 
in the matrix are designed to put policyholders into specific homogeneous classes based on driving 
performance (i.e. claim frequency of the driver).   
The entries in the matrix represent the number of claims required to increase or decrease the discount 
paid by the classes of drivers. The vertical axis represents the new discounts and maluses (surcharges, 
penalties, etc.), where the middle point on the axis is the class where neither discounts nor surcharges are
assessed to premiums. The horizontal axis represents the current discounts and maluses assessed on a 
class of drivers. This matrix is then applied to certain vectors that represent driver classes and their claim
history for the year. This then adjusts their premiums based on their performance (i.e. if they had claims 
filed against them). 

As you can see, most of my presentation consists of my understanding of what a Markov chain is and 
how it applies to linear algebra. If I had more time, I would like to find sources that are more readable 
and more approachable to this application of linear algebra in actuarial science. Most of the literature 
that I consulted used series and various statistical computations/methods to explain the Markov chain 
process. 
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