1) In the homework due today, did you use something similar to the following critical analysis/reasoning?
Multiply both sides of an equation by the inverse of a matrix
Reorder parenthesis by associativity to pair a matrix with its inverse
Cancel A by its inverse: $A^{-1} A=I_{n \times n}$ or $A^{-1} A=I_{n \times n}$ Identity reduces
a) Yes and I used it more than once
b) Yes and I used it once
c) No, although I used some of this reasoning
d) No, I didn't use anything like it
e) What homework?
2) If A is an invertible $n \times n$ matrix, and \vec{x} and \vec{b} are $n \times 1$ vectors, then the matrix-vector equation $A \vec{x}=\vec{b}$ has a unique solution
a) True and I can tell you what the solution is
b) True but I am unsure what the solution is
c) Always false
d) False but sometimes true (and sometimes false)
3) If $A \vec{x}=\overrightarrow{0}$, then is $C(A \vec{x})=\overrightarrow{0} C$?
a) Yes and I have a good reason why
b) Yes but I am unsure of why
c) No but I am unsure of why not
d) No and I have a good reason why not
4) If A is an invertible $n \times n$ matrix, with $n>1$, and \vec{x} and \vec{b} are $1 \times n$ vectors, then the matrix-vector equation $A \vec{x}=\vec{b}$ has a unique solution
a) True and I can tell you what the solution is
b) True but I am unsure what the solution is
c) Always false
d) False but sometimes true (and sometimes false)
5) If A is not invertible and $A B=A C$, must $B=C$?
a) Yes and I have a good reason why
b) Yes but I am unsure of why
c) No but I am unsure of why not
d) No and I have a counterexample

Solutions

1. a)
2. a)
3. d)
4. c)
5. d)
