- 1. Multiplying a column vector \vec{v}_1 by a real number c_1
 - a) scales each entry in \vec{v}_1 by c_1 algebraically, but has no geometric interpretation
 - b) keeps \vec{v}_1 on the same line through the origin and stretches or shrinks it according to the value of c_1 .
 - c) creates the diagonal of the parallelogram formed by \vec{v}_1 and c_1
 - d) has no algebraic nor geometric interpretation
 - e) none of the above

2. What do the collection of column vectors $c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, for c_1 and c_2 real, have in common?

- a) They are vectors of the form $\begin{bmatrix} c_1 + 2c_2 \\ c_1 + 2c_2 \end{bmatrix}$
- b) They create the diagonals of parallelograms
- c) They form all of \mathbb{R}^2
- d) both a) and b)
- e) both a) and c)

3. Notice that $-1\begin{bmatrix} 1\\4\\7\end{bmatrix} + 2\begin{bmatrix} 2\\5\\8\end{bmatrix} = \begin{bmatrix} 3\\6\\9\end{bmatrix}$. More generally, what do the collection of column vectors $c_1\begin{bmatrix} 1\\4\\7\end{bmatrix} + c_2\begin{bmatrix} 2\\5\\8\end{bmatrix}$, for c_1 and c_2 real, have in common? a) the line connecting the tips of $\begin{bmatrix} 1\\4\\7\end{bmatrix}$ and $\begin{bmatrix} 2\\5\\8\end{bmatrix}$ b) the plane formed by $\begin{bmatrix} 1\\4\\7\end{bmatrix}$ and $\begin{bmatrix} 2\\5\\8\end{bmatrix}$ c) a non-linear curve d) a non-linear surface

e) none of the above

4. We perform the following in Maple: s13n15extension:=Matrix([[1,-5,b1],[3,-8,b2],[-1,2,b3]]); ReducedRowEchelonForm(s13n15extension); [1 0 0]

and obtain the 3x3 identity $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Which of the following are true?

a)
$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
 is never in the span of $\begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} -5 \\ -8 \\ 2 \end{bmatrix}$
b) $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ is never a linear combination of $\begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} -5 \\ -8 \\ 2 \end{bmatrix}$
c) $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ is never in the plane formed by $\begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} -5 \\ -8 \\ 2 \end{bmatrix}$

- d) all of the above
- e) none of the above
- 5. For two column vectors \vec{v}_1 and \vec{v}_2 , $\{c_1\vec{v}_1 + \vec{v}_2 \text{ so that } c_1 \text{ is real}\}$ is
 - a) a collection of vectors whose tips lie on the line parallel to $\vec{v_1}$ and through the tip of $\vec{v_2}$
 - b) a collection of vectors whose tips lie on the line parallel to \vec{v}_2 and through the tip of \vec{v}_1
 - c) a line because c_1 is free, but we can't say any more about it
 - d) has no geometric interpretation
 - e) more than one of the above

Solutions

1. b)

- 2. a)
- 3. b)
- 4. e) [need to Use Gaussian instead!]
- 5. a)