- 1. Using only the definition of span and linearly independent, the following reduction $\begin{bmatrix}
 1 & 0 & -2 & 0 \\
 2 & 1 & 0 & 0 \\
 3 & 2 & 1 & 0
 \end{bmatrix} \rightarrow
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0
 \end{bmatrix}$ tells us that $a)
 \begin{bmatrix}
 1 \\
 2 \\
 3
 \end{bmatrix},
 \begin{bmatrix}
 0 \\
 1 \\
 2
 \end{bmatrix},
 \begin{bmatrix}
 -2 \\
 0 \\
 1
 \end{bmatrix}$ span \mathbb{R}^3 $b)
 \begin{bmatrix}
 1 \\
 2 \\
 3
 \end{bmatrix},
 \begin{bmatrix}
 0 \\
 1 \\
 2
 \end{bmatrix},
 \begin{bmatrix}
 -2 \\
 0 \\
 1
 \end{bmatrix}$ are linearly independent in \mathbb{R}^3 $c)
 \begin{bmatrix}
 1 \\
 0 \\
 -2
 \end{bmatrix},
 \begin{bmatrix}
 2 \\
 1 \\
 0
 \end{bmatrix},
 \begin{bmatrix}
 3 \\
 2 \\
 1
 \end{bmatrix}$ span \mathbb{R}^3 $d)
 \begin{bmatrix}
 1 \\
 0 \\
 -2
 \end{bmatrix},
 \begin{bmatrix}
 2 \\
 1 \\
 0
 \end{bmatrix},
 \begin{bmatrix}
 3 \\
 2 \\
 1
 \end{bmatrix}$ are linearly independent in \mathbb{R}^3
 - e) none of the above
- 2. The collection of column vectors

$$c_1 \begin{bmatrix} 1\\4\\7 \end{bmatrix} + c_2 \begin{bmatrix} 4\\5\\8 \end{bmatrix}$$
, for c_1 and c_2 real, form...

- a) the plane they span
- b) the plane they lie in
- c) both a) and b)
- d) neither a) nor b)