1. Using only the definition of span and linearly independent, the following reduction

$$
\left[\begin{array}{cccc}
1 & 0 & -2 & 0 \\
2 & 1 & 0 & 0 \\
3 & 2 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \text { tells us that }
$$

a) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right] \operatorname{span} \mathbb{R}^{3}$
b) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]$ are linearly independent in \mathbb{R}^{3}
c) $\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right] \operatorname{span} \mathbb{R}^{3}$
d) $\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ are linearly independent in \mathbb{R}^{3}
e) none of the above
2. The collection of column vectors

$$
c_{1}\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right]+c_{2}\left[\begin{array}{l}
4 \\
5 \\
8
\end{array}\right], \text { for } c_{1} \text { and } c_{2} \text { real, form... }
$$

a) the plane they span
b) the plane they lie in
c) both a) and b)
d) neither a) nor b)

