1. To reduce $1.1 \# 26$ (Problem 2 on PS1) to Gaussian by-hand we can apply
$\left[\begin{array}{lll}2 & 4 & f \\ c & d & g\end{array}\right] \xrightarrow{r_{2}^{\prime}=-\frac{c}{2} r_{1}+r_{2}}\left[\begin{array}{ccc}2 & 4 & f \\ 0 & -2 c+d & -\frac{c}{2} f+g\end{array}\right]$. The book asks us what conditions we have on c and d to ensure consistency no matter what values f and g take on. The reasoning is:
a) The system is always consistent because Maple shows us that we have full pivots via ReducedRowEchelon equaling $\left[\begin{array}{lll}1 & 0 & -\frac{1}{2} \frac{d f-4 g}{-d+2 c} \\ 0 & 1 & -\frac{1}{2} \frac{c f-2 g}{-d+2 c}\end{array}\right]$, so c and d can take on any values, no matter what f and g are.
b) The system is never consistent because we always obtain [000 nonzero $]$, so there are no values of c and d that work.
c) We must have $d \neq 2 c$ because otherwise we'll obtain [$0 \quad 0 \quad$ nonzero $]$ whenever $g \neq \frac{c}{2} f$.
d) Either $d \neq 2 c$ to give us a pivot for x_{2} or we make x_{2} free by setting $g=\frac{c}{2} f$ whenever $d=2 c$.
e) Other

Solutions

1. c)
