For $A_{m \times n}$ the following are equivalent (TFAE):

- a. For each \vec{b} in \mathbb{R}^m , $A\vec{x} = \vec{b}$ has at least one solution (one or more \vec{x} in \mathbb{R}^n)
- b. Each \vec{b} in \mathbb{R}^m is a linear combination of the columns of A
- c. The columns of A span \mathbb{R}^m
- d. A has a pivot position in every row

For
$$A_{2\times3}$$
: $A\begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} b_1\\ b_2 \end{bmatrix}$ has the augmented matrix $\begin{bmatrix} A & b_1\\ b_2 \end{bmatrix}$
Compare A as $\begin{bmatrix} 1 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$ with A as $\begin{bmatrix} 1 & 1 & 0\\ 0 & 0 & 0 \end{bmatrix}$