The following are equivalent (TFAE) for linear independence (l.i.):

a.
$$c_1 \vec{v}_1 + \dots + c_n \vec{v}_n = \vec{0}$$
 has only the trivial solution $\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$ (i.e. the def of $\{v_1, \dots, v_n\}$ l.i.)
b. $\begin{bmatrix} \vec{v}_1 & \dots & \vec{v}_n \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$ has only the trivial solution $\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$
c. $\begin{bmatrix} \vec{v}_1 & \dots & \vec{v}_n & \vdots \\ 0 \end{bmatrix}$ reduces to a matrix with a pivot position in every column except the = column

Compare to Theorem 4 for span where $\left[A|\vec{b}\right]$ reduces to a matrix that has no row $[0\ldots 0|b_i]$, i.e. there is a pivot position in every row of A

Clicker questions:

- 1. a) $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix} \begin{bmatrix} 2\\0 \end{bmatrix} \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ is linearly independent b) span of $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix} \begin{bmatrix} 2\\0 \end{bmatrix} \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ is \mathbb{R}^2 c) both a) and b)
 - d) neither

Solutions

1. b)

2. a)