The following are equivalent (TFAE) for linear independence (l.i.):
a. $c_{1} \vec{v}_{1}+\ldots+c_{n} \vec{v}_{n}=\overrightarrow{0}$ has only the trivial solution $\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$ (i.e. the def of $\left\{v_{1}, \ldots, v_{n}\right\}$ l.i.)
b. $\left[\begin{array}{lll} & & \\ \vec{v}_{1} & \ldots & \vec{v}_{n}\end{array}\right]\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$ has only the trivial solution $\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$
c. $\left[\begin{array}{cccc} & & & 0 \\ \vec{v}_{1} & \ldots & \vec{v}_{n} & \vdots \\ & & & 0\end{array}\right]$ reduces to a matrix with a pivot position in every column except the $=$ column

Compare to Theorem 4 for span where $[A \mid \vec{b}]$ reduces to a matrix that has no row $\left[0 \ldots 0 \mid b_{i}\right]$, i.e. there is a pivot position in every row of A

Clicker questions:

1. a) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\left[\begin{array}{l}2 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ is linearly independent
b) span of $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\left[\begin{array}{l}2 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ is \mathbb{R}^{2}
c) both a) and b)
d) neither
2. a) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ is linearly independent
b) span of $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ is \mathbb{R}^{2}
c) both a) and b)
d) neither

Solutions

1. b)
2. a)
