6.1, Chapter 3 and Chapter 5 Terms

- 1. length or norm of a vector
- 2. line vector is on
- 3. angle between vectors
- 4. orthogonal vectors
- 5. what makes a matrix invertible
- 6. determinant of 2×2
- 7. determinant of 3×3 via 6 diagonals
- 8. determinant of 3×3 via Laplace expansion
- 9. span of v_1, v_2, \dots, v_k 10. v_1, v_2, \dots, v_k span \mathbb{R}^n
- 11. v_1, v_2, \ldots, v_k linearly independent
- 12. subspace

- 13. basis for a subspace
- 14. column space of A
- 15. homogeneous equation vs coordinates
- 16. null space of A
- 17. eigenvalue
- 18. eigenvector
- 19. characteristic equation for eigenvalues
- 20. eigenspace and solving for a basis
- 21. eigenvector decomposition
- 22. trajectory
- 23. long term behavior (rate and direction/line)

Examples

- 1. column space and null space of a matrix
- 2. a projection matrix and its eigenvectors and eigenvalues
- 3. a reflection matrix and its eigenvectors and eigenvalues
- 4. a shear matrix and its eigenvectors and eigenvalues
- 5. a rotation matrix and its eigenvectors and eigenvalues

Write out definitions, big picture ideas, multiple representations and/or examples (whatever you would find the most helpful) as we cover them, or as a review of previous material.

- 1. length or norm of a vector
 - 2. line vector is on
 - 3. angle between vectors
 - 4. orthogonal vectors
 - 5. what makes a matrix invertible
 - 6. determinant of 2×2

7.	determinant of 3×3 via 6 diagonals
8.	determinant of 3×3 via Laplace expansion
9.	span of v_1, v_2, \ldots, v_k
10.	v_1, v_2, \dots, v_k span \mathbb{R}^n ?
11.	v_1, v_2, \dots, v_k linearly independent
12.	subspace
13.	basis for a subspace
14.	column space of A
15.	homogeneous equation versus homogeneous coordinates
16.	null space of A
17.	eigenvalue

	eigenvector
19.	characteristic equation for eigenvalues
20.	eigenspace and solving for a basis
21.	eigenvector decomposition
22.	trajectory
23.	long term behavior (rate and direction/line)
1.	Write out examples for the following:
1.	Write out examples for the following: column space and null space of a matrix
2.	column space and null space of a matrix
2.	column space and null space of a matrix a projection matrix and it's eigenvectors and eigenvalues