Group Debrief 4 Learning Goal 1: apply algorithms including the cofactor (Laplace) expansion to find determinants

- What are significant take aways of this learning outcome?
- Also reflect on personal connections, experiences and/or any remaining questions you have.
- 3. Prepare to share from your group's discussion with the class.
- Each group member takes a turn for each learning outcome. Try to help each other as material in this class builds upon itself.

Dr. Sarah MAT 2240: Introduction to Linear Algebra Learning Goal 2: investigate the connection of determinants to area and volume as well as the inverse matrix theorem

- 1. What are significant take aways of this learning outcome?
- 2. Also reflect on personal connections, experiences and/or any remaining questions you have.
- 3. Prepare to share from your group's discussion with the class.

Each group member takes a turn for each learning outcome. Try to help each other as material in this class builds upon itself.

Modeling of Hot-Mix Asphalt Compaction: A Thermodynamics-Based Compressible Viscoelastic Model

[FHWA-HF	RT-10-065]	< □ >	< ⊡ >	< ≣ >	< ≣ >	- 2	$\mathcal{O}\mathcal{A}\mathcal{C}$
Dr. Sarah	MAT 2240:	Introduction t	o Linear	Algebra	a		

Learning Goal 3: determine eigenvalues, eigenvectors, eigenspaces, and bases for eigenspaces

- 1. What are significant take aways of this learning outcome?
- 2. Also reflect on personal connections, experiences and/or any remaining questions you have.
- 3. Prepare to share from your group's discussion with the class.

Each group member takes a turn for each learning outcome. Try to help each other as material in this class builds upon itself.

Dr. Sarah MAT 2240: Introduction to Linear Algebra

Learning Goal 4: link determinants, eigenvalues and eigenvectors to earlier material, including systems of matrix and vector equations, matrix algebra, the inverse matrix theorem, nullspaces, and linear transformations

- 1. What are significant take aways of this learning outcome?
- 2. Also reflect on personal connections, experiences and/or any remaining questions you have.
- 3. Prepare to share from your group's discussion with the class.

Each group member takes a turn for each learning outcome.

Try to help each other as material in this class builds upon itself.

Learning Goal 5: characterize trajectories and long-term behavior of dynamical systems using eigenvalue decompositions

- 1. What are significant take aways of this learning outcome?
- 2. Also reflect on personal connections, experiences and/or any remaining questions you have.
- 3. Prepare to share from your group's discussion with the class.

Each group member takes a turn for each learning outcome. Try to help each other as material in this class builds upon itself.

Learning Goal 6: link algebra and geometry of the above, explore applications, and interpret statements

- 1. What are significant take aways of this learning outcome?
- 2. Also reflect on personal connections, experiences and/or any remaining questions you have.
- 3. Prepare to share from your group's discussion with the class.

Each group member takes a turn for each learning outcome. Try to help each other as material in this class builds upon itself.

Financial Markov Process, Creative Commons Attribution-Share Alike 3.0 Unported license.

ヘロン 人間 とくほ とくほ とう

1

Module 3 and Module 4 Review

- Linear Transformations and Orthogonality
 - 1.8 and 1.9: linear transformations as left multiplication of matrices
 - 6.1: length & angle of a vector, orthogonal vectors
 - 2.7: computer graphics, including the application of orthogonal vectors, matrix inverses and transposes

problem set 3

Determinants, Eigenvalues and Eigenvectors

- 3.1, 3.2, 3.3: determinants alg & geom, invertibility
- 5.1, 5.2: eigenvectors & eigenvalues alg & geom, nullspace($A \lambda I$)
- 5.6: eigenvector decomposition, limit, trajectory & populations

problem set 4 in-class assessment 2 final project

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …