Applying the inverse (if it exists)—2 Common Methods

Multiply both sides by the inverse: $A^{-1}(A\vec{x}) = A^{-1}\vec{b}$ Reorder parenthesis by associativity: $(A^{-1}A)\vec{x} = A^{-1}\vec{b}$ Cancel A by its inverse: $I_{n\times n}\vec{x} = A^{-1}\vec{b}$ Identity reduces to get \vec{x} alone: $\vec{x} = A^{-1}\vec{b}$

OR

 $A_{n \times n}$ must have full pivots to be invertible because it reduces to the identity matrix *I* so you can make use of the full pivots

In verse

Dr. Sarah 2.3: What Makes You Invertible

₹ 990

▲圖 ▶ ▲ 理 ▶ ▲ 理 ▶ …

In verse

Music by One Direction & idea adapted from Art Benjamin Interpreted by Dr. Sarah and Joel Landsberg

Baby you'll light up if one of these facts is so, but you'll need *n* square columns and rows:

- Like when \mathbb{R}^n is the span of the matrix columns
- That's when you know oh-oh invertible!
- If always you uniquely solve $A\vec{x}$ is \vec{b}
- Or if your columns have no linear dependency
- Or if matrix reduces to identity

→ E > < E >

In verse

Music by One Direction & idea adapted from Art Benjamin Interpreted by Dr. Sarah and Joel Landsberg

Baby you'll light up if one of these facts is so, but you'll need *n* square columns and rows:

- Like when \mathbb{R}^n is the span of the matrix columns
- That's when you know oh-oh invertible!
- If always you uniquely solve $A\vec{x}$ is \vec{b}
- Or if your columns have no linear dependency
- Or if matrix reduces to identity

Not zero - no no

That makes it not invertible!

通 と く ヨ と く ヨ と …

In verse

Music by One Direction & idea adapted from Art Benjamin Interpreted by Dr. Sarah and Joel Landsberg

Baby you'll light up if one of these facts is so, but you'll need *n* square columns and rows:

- Like when \mathbb{R}^n is the span of the matrix columns
- That's when you know oh-oh invertible!
- If always you uniquely solve $A\vec{x}$ is \vec{b}
- Or if your columns have no linear dependency
- Or if matrix reduces to identity

Not zero - no no

That makes it not invertible!

Shout out if one of these facts is so...

but you'll need *n* square columns and rows:

• Like when your matrix determinant's non-zero

Is when you know oh-oh-that makes it invertible!