Applying the inverse (if it exists)—2 Common Methods

Multiply both sides by the inverse: $A^{-1}(A \vec{x})=A^{-1} \vec{b}$ Reorder parenthesis by associativity: $\left(A^{-1} A\right) \vec{x}=A^{-1} \vec{b}$
Cancel A by its inverse: $I_{n \times n} \vec{X}=A^{-1} \vec{b}$ Identity reduces to get \vec{x} alone: $\vec{x}=A^{-1} \vec{b}$

OR
$A_{n \times n}$ must have full pivots to be invertible because it reduces to the identity matrix I so you can make use of the full pivots

In verse

What Makes You Invertible

In verse

What Makes You Invertible

Music by One Direction \& idea adapted from Art Benjamin Interpreted by Dr. Sarah and Joel Landsberg
Baby you'll light up if one of these facts is so, but you'll need n square columns and rows:

- Like when \mathbb{R}^{n} is the span of the matrix columns
- That's when you know oh-oh invertible!
- If always you uniquely solve $A \vec{x}$ is \vec{b}
- Or if your columns have no linear dependency
- Or if matrix reduces to identity

In verse

What Makes You Invertible

Music by One Direction \& idea adapted from Art Benjamin Interpreted by Dr. Sarah and Joel Landsberg
Baby you'll light up if one of these facts is so, but you'll need n square columns and rows:

- Like when \mathbb{R}^{n} is the span of the matrix columns
- That's when you know oh-oh invertible!
- If always you uniquely solve $A \vec{x}$ is \vec{b}
- Or if your columns have no linear dependency
- Or if matrix reduces to identity

Not zero - no no
That makes it not invertible!

In verse

What Makes You Invertible

Music by One Direction \& idea adapted from Art Benjamin Interpreted by Dr. Sarah and Joel Landsberg
Baby you'll light up if one of these facts is so, but you'll need n square columns and rows:

- Like when \mathbb{R}^{n} is the span of the matrix columns
- That's when you know oh-oh invertible!
- If always you uniquely solve $A \vec{x}$ is \vec{b}
- Or if your columns have no linear dependency
- Or if matrix reduces to identity

Not zero - no no
That makes it not invertible!
Shout out if one of these facts is so...
but you'll need n square columns and rows:

- Like when your matrix determinant's non-zero

Is when you know oh-oh-that makes it invertible!

