- \vec{v} is a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{n}$ if $\vec{v}=c_{1} \vec{v}_{1}+\cdots+c_{n} \vec{v}_{n}$, where the weights c_{i} are real.
- The span of $\vec{v}_{1}, \ldots, \vec{v}_{n}$ is the set of all linear combinations, over all possible weights. It is a linear space, which we can find by using a generic vector $\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots\end{array}\right]=c_{1} \vec{v}_{1}+\cdots+c_{n} \vec{v}_{n}$
- $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly independent (I.i.) when $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{n} \vec{v}_{n}=\overrightarrow{0}$ has only the trivial solution $\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ \vdots\end{array}\right]$ for the weights.
- If A has \vec{v}_{i} as its columns, i.e. $A=\left[\vec{v}_{1} \ldots \vec{v}_{n}\right]$, then span: linear space given by the \vec{b} consistent in $A \vec{x}=\vec{b}$ I.i.: $A \vec{x}=\overrightarrow{0}$ has only the $\vec{x}=\overrightarrow{0}$ solution (trivial solution)

