Multiplication of a Matrix $A_{m \times n}$ and a Vector $\vec{x}_{n \times 1}: A \vec{x}=\vec{b}_{m \times 1}$
linear combinations of columns of A using the weights from \vec{x} : $A \vec{x}=x_{1} \operatorname{col} 1 A+x_{2} \operatorname{col} 2 A+\ldots$
$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]=7\left[\begin{array}{l}1 \\ 4\end{array}\right]+8\left[\begin{array}{l}2 \\ 5\end{array}\right]+9\left[\begin{array}{l}3 \\ 6\end{array}\right]=\left[\begin{array}{l}7 \cdot 1+8 \cdot 2+9 \cdot 3 \\ 7 \cdot 4+8 \cdot 5+9 \cdot 6\end{array}\right]$
$\left.\begin{array}{l}\text { dot products of rows of } A \text { using } \vec{x}: A \vec{x}=\left[\begin{array}{c}\operatorname{row} 1 A \cdot \vec{x} \\ \operatorname{row} 2 A \cdot \vec{x} \\ \vdots\end{array}\right] \\ {\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] \cdot\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]} \\ {\left[\begin{array}{lll}4 & 5 & 6\end{array}\right] \cdot\left[\begin{array}{c}7 \\ 8 \\ 9\end{array}\right]}\end{array}\right]=$ sum product of entries
Multiple representations allow us to go back and forth between a matrix equation, vector equation, system of equations, and augmented matrix

