- Solve homogeneous equation $A \vec{x}=\overrightarrow{0}$ to find the intersections of the rows. If they intersect in more than the trivial solution, then we can express the linear space using the free variables:
- Gaussian
- set any free variables (variables without pivots) as parameters
- use the rows to solve for any variables with pivots in terms of the parameters
- write out the solutions in vector form
- factor out the free variables to see the solutions as the span of one or more vectors
- Solve homogeneous equation $A \vec{x}=\overrightarrow{0}$ to find the intersections of the rows. If they intersect in more than the trivial solution, then we can express the linear space using the free variables:
- Gaussian
- set any free variables (variables without pivots) as parameters
- use the rows to solve for any variables with pivots in terms of the parameters
- write out the solutions in vector form
- factor out the free variables to see the solutions as the span of one or more vectors
- For $A \vec{x}=\vec{b}$, where $\vec{b} \neq 0$, if it is consistent with infinite solutions, then we can express solutions as $\vec{x}_{h}+\overrightarrow{x_{p}}$.
For example: $t \vec{v}_{1}+\vec{v}_{2}=t\left[\begin{array}{c}v_{11} \\ v_{12} \\ \vdots\end{array}\right]+\left[\begin{array}{c}v_{21} \\ v_{22} \\ \vdots\end{array}\right]$
- Solve homogeneous equation $A \vec{x}=\overrightarrow{0}$ to find the intersections of the rows. If they intersect in more than the trivial solution, then we can express the linear space using the free variables:
- Gaussian
- set any free variables (variables without pivots) as parameters
- use the rows to solve for any variables with pivots in terms of the parameters
- write out the solutions in vector form
- factor out the free variables to see the solutions as the span of one or more vectors
- For $A \vec{x}=\vec{b}$, where $\vec{b} \neq 0$, if it is consistent with infinite solutions, then we can express solutions as $\vec{x}_{h}+\overrightarrow{x_{p}}$. For example: $t \vec{v}_{1}+\vec{v}_{2}=t\left[\begin{array}{c}v_{11} \\ v_{12} \\ \vdots\end{array}\right]+\left[\begin{array}{c}v_{21} \\ v_{22} \\ \vdots\end{array}\right]$
- The number of free variables determines the geometry: 1 line, 2 plane, 3 volume, $n-1$ hyperplane...

