- Solve homogeneous equation $A\vec{x} = \vec{0}$ to find the intersections of the rows. If they intersect in more than the trivial solution, then we can express the linear space using the free variables:
 - Gaussian
 - set any free variables (variables without pivots) as parameters
 - use the rows to solve for any variables with pivots in terms of the parameters
 - write out the solutions in vector form
 - factor out the free variables to see the solutions as the span of one or more vectors

▲□ > ▲ □ > ▲ □ > …

- Solve homogeneous equation $A\vec{x} = \vec{0}$ to find the intersections of the rows. If they intersect in more than the trivial solution, then we can express the linear space using the free variables:
 - Gaussian
 - set any free variables (variables without pivots) as parameters
 - use the rows to solve for any variables with pivots in terms of the parameters
 - write out the solutions in vector form
 - factor out the free variables to see the solutions as the span of one or more vectors
- For $A\vec{x} = \vec{b}$, where $\vec{b} \neq 0$, if it is consistent with infinite solutions, then we can express solutions as $\vec{x}_h + \vec{x_p}$.

For example:
$$t\vec{v}_1 + \vec{v}_2 = t \begin{bmatrix} v_{11} \\ v_{12} \\ \vdots \end{bmatrix} + \begin{bmatrix} v_{21} \\ v_{22} \\ \vdots \end{bmatrix}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Solve homogeneous equation $A\vec{x} = \vec{0}$ to find the intersections of the rows. If they intersect in more than the trivial solution, then we can express the linear space using the free variables:
 - Gaussian
 - set any free variables (variables without pivots) as parameters
 - use the rows to solve for any variables with pivots in terms of the parameters
 - write out the solutions in vector form
 - factor out the free variables to see the solutions as the span of one or more vectors
- For $A\vec{x} = \vec{b}$, where $\vec{b} \neq 0$, if it is consistent with infinite solutions, then we can express solutions as $\vec{x}_h + \vec{x_p}$.

For example:
$$t\vec{v}_1 + \vec{v}_2 = t\begin{bmatrix} v_{11} \\ v_{12} \\ \vdots \end{bmatrix} + \begin{bmatrix} v_{21} \\ v_{22} \\ \vdots \end{bmatrix}$$

• The number of free variables determines the geometry: 1 line, 2 plane, 3 volume, n - 1 hyperplane.