with(LinearAlgebra) : A
$:=\operatorname{Matrix}\left(\left[\left[(\cos (\text { theta }))^{\wedge} 2 /\left((\cos (\text { theta }))^{\wedge} 2\right.\right.\right.\right.$
$\left.+(\sin (\text { theta }))^{\wedge} 2\right),(\cos ($ theta $) * \sin ($ theta $))$
$\left./\left((\cos (\text { theta }))^{\wedge} 2+(\sin (\text { theta }))^{\wedge} 2\right)\right]$,
$\left[(\cos (\right.$ theta $) * \sin ($ theta $)) /\left((\cos (\text { theta }))^{\wedge} 2\right.$ $\left.+(\sin (\text { theta }))^{\wedge} 2\right),\left((\sin (\text { theta }))^{\wedge} 2\right)$
$\left.\left.\left./\left((\cos (\text { theta }))^{\wedge} 2+(\sin (\text { theta }))^{\wedge} 2\right)\right]\right]\right) ;$

$$
\left.\begin{array}{cl}
\frac{\cos (\theta)^{2}}{\cos (\theta)^{2}+\sin (\theta)^{2}} & \frac{\cos (\theta) \sin (\theta)}{\cos (\theta)^{2}+\sin (\theta)^{2}} \tag{1}\\
\frac{\cos (\theta) \sin (\theta)}{\cos (\theta)^{2}+\sin (\theta)^{2}} & \frac{\sin (\theta)^{2}}{\cos (\theta)^{2}+\sin (\theta)^{2}}
\end{array}\right]
$$

A represents a matrix that projects vectors onto the line through the origin that makes an angle of theta degrees with the positive x-axis. Ie this projects the shadow that an object makes as light rays come in perpendicular to the line given by $y=\tan ($ theta $) x$. Here is what happens when theta is $\frac{\mathrm{Pi}}{4}$. First, here is the input (red) and output (blue) picture for one vector. Notice that the red vector is projected
onto the $\mathrm{y}=\tan ($ theta $) \mathrm{x}$ line via its shadow.
Drawvec ($w,[$ A.w, headcolor $=$ blue, thickness
=4]);

We place the output vectors in blue at the tail of the input vectors for ease of visualizing them all at once.

When theta is $\frac{\mathrm{Pi}}{2}$

When theta is $\frac{\mathrm{Pi}}{1.8}$

We can identify the eigenvectors by looking for vectors which stay on the same line through the origin.
Eigenvectors (A);
Error, (in LinearAlgebra:-
LA_Main:-Eigenvectors) expecting eīher Matrices of rationals, rational functions, radical functions, algebraic numbers, or algebraic functions, or Matrices
of complex(numeric) values
Eigenvalues (A);

$$
\left[\begin{array}{l}
0 \tag{2}\\
1
\end{array}\right]
$$

The eigenvector of 1 corresponds to vectors on the line of projection

ie

$$
\left[\begin{array}{c}
\cos (\theta) \tag{3}\\
\sin (\theta)
\end{array}\right]
$$

that has full shadow and the eigenvector of 0 corresponds to vectors perpendicular so we take the negative reciprocal $-\sin (\theta)$
that has no $\cos (\theta)$
shadow. Each of these is a basis representative for their respective lines. All other vectors are moved off their original lines onto the $y=\tan ($ theta $) x$ line. So now we form P as the matrix of eigenvectors: $P:=\operatorname{Matrix}([[\cos ($ theta $),-\sin ($ theta $)]$,
$[\sin ($ theta $), \cos ($ theta $)]]) ;$

$$
\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \tag{4}\\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

P is a rotation matrix with a counterclockwise rotation by theta. The inverse matrix is a clockwise rotation by theta.
Diag $:=\operatorname{Matrix}([[1,0],[0,0]])$;

$$
\left[\begin{array}{ll}
1 & 0 \tag{5}\\
0 & 0
\end{array}\right]
$$

The Diag matrix is the matrix that projects onto the
x -axis, ie when theta is is 0 .
P.Diag.MatrixInverse (P);

$$
\left[\begin{array}{cc}
\frac{\cos (\theta)^{2}}{\cos (\theta)^{2}+\sin (\theta)^{2}} & \frac{\cos (\theta) \sin (\theta)}{\cos (\theta)^{2}+\sin (\theta)^{2}} \tag{6}\\
\frac{\cos (\theta) \sin (\theta)}{\cos (\theta)^{2}+\sin (\theta)^{2}} & \frac{\sin (\theta)^{2}}{\cos (\theta)^{2}+\sin (\theta)^{2}}
\end{array}\right]
$$

A is the projection onto the $\mathrm{y}=\tan$ (theta) line. Using diagonalization, this is also the same as first rotating a point clockwise by theta, using the projection onto the x -axis, and then rotating counterclockwise back where we began. This type of visualization will be very useful for computer graphics.

