Catalog description: A study of vectors, matrices and linear transformations, principally in two and three dimensions, including treatments of systems of linear equations, determinants, and eigenvalues. Prerequisite: MAT 1120 or permission of the instructor. Course Goals

- Develop algebraic skills
- Develop mathematical reasoning and problem solving
- Develop spatial visualization skills
- Learn about some applications of linear algebra
- An introduction to a computer algebra software system as it applies to linear algebra
Mapping of the Topics in the Catalog Description to the Text
Systems of Linear Equations: 1.1, 1.2, 1.5
Vectors: 1.3, 1.4, 1.7, 6.1
Matrices: earlier +2.1, 2.2, 2.3
Linear transformations 1.8, 1.9 (1-1 and onto eliminated), 2.7
Determinants: 3.1, 3.2, 3.3
Eigenvalues 2.8, 5.1, 5.2, 5.6
1.8, 1.9, 2.7 and 6.1: Rotation counterclockwise by θ

$$
\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \text { with columns: } \vec{u}=\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right], \vec{v}=\left[\begin{array}{c}
-\sin (\theta) \\
\cos (\theta)
\end{array}\right]
$$

Length (or norm) of $\vec{u}=\|\vec{u}\|$
1.8, 1.9, 2.7 and 6.1: Rotation counterclockwise by θ
$\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ with columns: $\vec{u}=\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right], \vec{v}=\left[\begin{array}{c}-\sin (\theta) \\ \cos (\theta)\end{array}\right]$
Length (or norm) of $\vec{u}=\|\vec{u}\| \sqrt{\vec{u} \cdot \vec{u}}=\sqrt{\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right] \cdot\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right]}$

1.8, 1.9, 2.7 and 6.1: Rotation counterclockwise by θ

 $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ with columns: $\vec{u}=\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right], \vec{v}=\left[\begin{array}{c}-\sin (\theta) \\ \cos (\theta)\end{array}\right]$Length (or norm) of $\vec{u}=\|\vec{u}\| \sqrt{\vec{u} \cdot \vec{u}}=\sqrt{\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right] \cdot\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right]}$

- Here inner product $\vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v}$ induces metric on the space $\|\vec{u}-\vec{v}\|$ is distance between vectors as in 1.3

1.8, 1.9, 2.7 and 6.1: Rotation counterclockwise by θ

 $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ with columns: $\vec{u}=\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right], \vec{v}=\left[\begin{array}{c}-\sin (\theta) \\ \cos (\theta)\end{array}\right]$Length (or norm) of $\vec{u}=\|\vec{u}\| \sqrt{\vec{u} \cdot \vec{u}}=\sqrt{\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right] \cdot\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right]}$

- Here inner product $\vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v}$ induces metric on the space $\|\vec{u}-\vec{v}\|$ is distance between vectors as in 1.3
- Generalized inner products for nonlinear/non-Euclidean satisfy axiomatic properties like distributivity, pulling out scalars, positive definite condition

1.8, 1.9, 2.7 and 6.1: Rotation counterclockwise by θ

 $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ with columns: $\vec{u}=\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right], \vec{v}=\left[\begin{array}{c}-\sin (\theta) \\ \cos (\theta)\end{array}\right]$Length (or norm) of $\vec{u}=\|\vec{u}\| \sqrt{\vec{u} \cdot \vec{u}}=\sqrt{\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right] \cdot\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right]}$

- Here inner product $\vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v}$ induces metric on the space $\|\vec{u}-\vec{v}\|$ is distance between vectors as in 1.3
- Generalized inner products for nonlinear/non-Euclidean satisfy axiomatic properties like distributivity, pulling out scalars, positive definite condition
- Two vectors are orthogonal if right angle between them. One formulation of the dot product $\vec{u} \cdot \vec{v}$ is $||\vec{u} \|||\vec{v}|| \cos \theta$, where θ is the angle between them, so

1.8, 1.9, 2.7 and 6.1: Rotation counterclockwise by θ

 $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ with columns: $\vec{u}=\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right], \vec{v}=\left[\begin{array}{c}-\sin (\theta) \\ \cos (\theta)\end{array}\right]$Length (or norm) of $\vec{u}=\|\vec{u}\| \sqrt{\vec{u} \cdot \vec{u}}=\sqrt{\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right] \cdot\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right]}$

- Here inner product $\vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v}$ induces metric on the space $\|\vec{u}-\vec{v}\|$ is distance between vectors as in 1.3
- Generalized inner products for nonlinear/non-Euclidean satisfy axiomatic properties like distributivity, pulling out scalars, positive definite condition
- Two vectors are orthogonal if right angle between them. One formulation of the dot product $\vec{u} \cdot \vec{v}$ is $\|\vec{u}\|\|\mid \vec{v}\| \cos \theta$, where θ is the angle between them, so the dot product is 0 exactly when the angle is $\frac{\pi}{2}$

1.8, 1.9, 2.7 and 6.1: Rotation counterclockwise by θ

 $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ with columns: $\vec{u}=\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right], \vec{v}=\left[\begin{array}{c}-\sin (\theta) \\ \cos (\theta)\end{array}\right]$Length (or norm) of $\vec{u}=\|\vec{u}\| \sqrt{\vec{u} \cdot \vec{u}}=\sqrt{\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right] \cdot\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right]}$

- Here inner product $\vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v}$ induces metric on the space $\|\vec{u}-\vec{v}\|$ is distance between vectors as in 1.3
- Generalized inner products for nonlinear/non-Euclidean satisfy axiomatic properties like distributivity, pulling out scalars, positive definite condition
- Two vectors are orthogonal if right angle between them. One formulation of the dot product $\vec{u} \cdot \vec{v}$ is $\|\vec{u}\|\|\mid \vec{v}\| \cos \theta$, where θ is the angle between them, so the dot product is 0 exactly when the angle is $\frac{\pi}{2}$
- Note in ASULearn sqrt(1)

