Rotation: $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ Dilation: $\left[\begin{array}{ll}c & 0 \\ 0 & c\end{array}\right]$ Horizontal Shear: $\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right]$
Projections: $y=x$ line: $\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right] x$-axis: $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] y$-axis: $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
Reflections: $y=x$ line: $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] x$-axis: $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] y$-axis: $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
Translation: $\left[\begin{array}{lll}1 & 0 & h \\ 0 & 1 & k \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{c}x+h \\ y+k \\ 1\end{array}\right] \quad$ Others: $\left[\begin{array}{lll}a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1\end{array}\right]$
Rotate a Figure about the point $\left[\begin{array}{l}4 \\ 9\end{array}\right]$:
$\left[\begin{array}{lll}1 & 0 & 4 \\ 0 & 1 & 9 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -4 \\ 0 & 1 & -9 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}x_{1} & \ldots & x_{p} \\ y_{1} & \ldots & y_{p} \\ 1 & \ldots & \equiv 1\end{array}\right]$

Applications of Matrix Algebra:

Keeping a car on a racetrack

- In the rotation matrix we used orthogonal vectors, and unitized each of them by dividing by the length/norm, to avoid the size of the car changing with the speed
- Multiplication is not associative-fly off the road (Rotate Translate car)or stay on it (Translate Rotate car)

Applications of Matrix Algebra:

Keeping a car on a racetrack

- In the rotation matrix we used orthogonal vectors, and unitized each of them by dividing by the length/norm, to avoid the size of the car changing with the speed
- Multiplication is not associative-fly off the road (Rotate Translate car)or stay on it (Translate Rotate car)

Transforming Yoda

- Yoda was given in rows but our transformations and left multiplication use columns
- $(\text { RotationYoda })^{T}$

Applications of Matrix Algebra:

Keeping a car on a racetrack

- In the rotation matrix we used orthogonal vectors, and unitized each of them by dividing by the length/norm, to avoid the size of the car changing with the speed
- Multiplication is not associative-fly off the road (Rotate Translate car)or stay on it (Translate Rotate car)

Transforming Yoda

- Yoda was given in rows but our transformations and left multiplication use columns
- $(\text { RotationYoda })^{T}=\left(\text { Yoda }^{T}\right)^{T}$ Rotation $^{T}=$

Applications of Matrix Algebra:

Keeping a car on a racetrack

- In the rotation matrix we used orthogonal vectors, and unitized each of them by dividing by the length/norm, to avoid the size of the car changing with the speed
- Multiplication is not associative-fly off the road (Rotate Translate car)or stay on it (Translate Rotate car)

Transforming Yoda

- Yoda was given in rows but our transformations and left multiplication use columns
- $(\text { RotationYoda })^{T}=\left(\text { Yoda }^{T}\right)^{T}$ Rotation $^{T}=$ YodaRotation T slow faster
- So we make use of $(A B)^{T}=B^{T} A^{T}$ to save time-in this case we convert to right multiplication by Rotation ${ }^{T}$

Applications of Matrix Algebra:

Keeping a car on a racetrack

- In the rotation matrix we used orthogonal vectors, and unitized each of them by dividing by the length/norm, to avoid the size of the car changing with the speed
- Multiplication is not associative-fly off the road (Rotate Translate car)or stay on it (Translate Rotate car)

Transforming Yoda

- Yoda was given in rows but our transformations and left multiplication use columns
- $(\text { RotationYoda })^{T}=\left(\text { Yoda }^{T}\right)^{T}$ Rotation $^{T}=$ YodaRotation T slow faster
- So we make use of $(A B)^{T}=B^{T} A^{T}$ to save time-in this case we convert to right multiplication by Rotation ${ }^{T}$

$$
\begin{array}{cc}
A_{2 \times 2}\left(B_{2 \times 2} D_{2 \times 100}\right)=\left(A_{2 \times 2} B_{2 \times 2}\right) D_{2 \times 100} \\
\text { slow } & \text { faster } \\
800 & 408
\end{array}
$$

