Rotation:
$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
 Dilation:
$$\begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}$$
 Horizontal Shear:
$$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$

Projections: $y=x$ line:
$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} x$$
-axis:
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} y$$
-axis:
$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Reflections: $y=x$ line:
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} x$$
-axis:
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} y$$
-axis:
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Translation:
$$\begin{bmatrix} 1 & 0 & h \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x+h \\ y+k \\ 1 \end{bmatrix}$$
 Others:
$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotate a Figure about the point
$$\begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$$
:

$$\begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 9 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -9 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 & \dots & x_p \\ y_1 & \dots & y_p \\ 0 & 0 & 1 \end{bmatrix} = 220$$

Keeping a car on a racetrack

- In the rotation matrix we used orthogonal vectors, and unitized each of them by dividing by the length/norm, to avoid the size of the car changing with the speed
- Multiplication is not associative–fly off the road (Rotate Translate car)or stay on it (Translate Rotate car)

(ロ) (同) (三) (三) (三) (○) (○)

Keeping a car on a racetrack

- In the rotation matrix we used orthogonal vectors, and unitized each of them by dividing by the length/norm, to avoid the size of the car changing with the speed
- Multiplication is not associative–fly off the road (Rotate Translate car)or stay on it (Translate Rotate car)

Transforming Yoda

 Yoda was given in rows but our transformations and left multiplication use columns

(ロ) (同) (三) (三) (三) (○) (○)

• $(RotationYoda^T)^T$

Keeping a car on a racetrack

- In the rotation matrix we used orthogonal vectors, and unitized each of them by dividing by the length/norm, to avoid the size of the car changing with the speed
- Multiplication is not associative–fly off the road (Rotate Translate car)or stay on it (Translate Rotate car)

Transforming Yoda

 Yoda was given in rows but our transformations and left multiplication use columns

(日) (日) (日) (日) (日) (日) (日)

• $(RotationYoda^T)^T = (Yoda^T)^T Rotation^T =$

Keeping a car on a racetrack

- In the rotation matrix we used orthogonal vectors, and unitized each of them by dividing by the length/norm, to avoid the size of the car changing with the speed
- Multiplication is not associative–fly off the road (Rotate Translate car)or stay on it (Translate Rotate car)

Transforming Yoda

- Yoda was given in rows but our transformations and left multiplication use columns
- $(RotationYoda^{T})^{T} = (Yoda^{T})^{T}Rotation^{T} = YodaRotation^{T}$ slow faster
- So we make use of $(AB)^T = B^T A^T$ to save time—in this case we convert to right multiplication by *Rotation*^T

Keeping a car on a racetrack

- In the rotation matrix we used orthogonal vectors, and unitized each of them by dividing by the length/norm, to avoid the size of the car changing with the speed
- Multiplication is not associative–fly off the road (Rotate Translate car)or stay on it (Translate Rotate car)

Transforming Yoda

- Yoda was given in rows but our transformations and left multiplication use columns
- $(RotationYoda^{T})^{T} = (Yoda^{T})^{T}Rotation^{T} = YodaRotation^{T}$ slow faster

• So we make use of $(AB)^T = B^T A^T$ to save time—in this case we convert to right multiplication by *Rotation*^T

$$A_{2 \times 2}(B_{2 \times 2}D_{2 \times 100}) = (A_{2 \times 2}B_{2 \times 2})D_{2 \times 100}$$

slow faster
800 408