Given a matrix A, an eigenvector stays on the same line through the original which A was on, and so

$$
A\binom{x}{y}=t\binom{x}{y}
$$

for some real number t. Hence eigenvectors turn matrix multiplication into scalar multiplication.

Let's revisit a problem from earlier in the semester:
Each year 6% of the urban population moves to rural areas and the remaining 94% stay in urban areas.
Each year 9% of the rural population moves to urban areas and the remaining 91% stay in rural areas.
$[>$ A: $=$ Matrix $([[94 / 100,9 / 100],[6 / 100$, 91/100]]);

$$
A:=\left[\begin{array}{cc}
\frac{47}{50} & \frac{9}{100} \\
\frac{3}{50} & \frac{91}{100}
\end{array}\right]
$$

" $>$ Eigenvectors (A);

$$
\left[\begin{array}{c}
\frac{17}{20} \tag{1.1}\\
1
\end{array}\right],\left[\begin{array}{cc}
-1 & \frac{3}{2} \\
1 & 1
\end{array}\right]
$$

Why do the eigenvectors form a basis for R^{2} ?

$$
x_{0}=c_{1} \frac{17}{20}\binom{-1}{1}+c_{2} 1\binom{\frac{3}{2}}{1}
$$

using the definition of basis. Also, by applying powers of A to the equation, matrix multiplication turns into scalar multiplication because of the definition of eigenvectors, and so

$$
\begin{gathered}
x_{1}=A x_{0}= \\
c_{1} A\binom{-1}{1}+c_{2} A\binom{\frac{3}{2}}{1}=c_{1} \frac{17}{20}\binom{-1}{1}+c_{2} 1\binom{\frac{3}{2}}{1} \\
x_{2}=A x_{1}=c_{1}\left(\frac{17}{20}\right)^{2}\binom{-1}{1}+c_{2}(1)^{2}\binom{\frac{3}{2}}{1} \\
x_{k}=c_{1}\left(\frac{17}{20}\right)^{k}\binom{-1}{1}+c_{2}(1)^{k}\binom{\frac{3}{2}}{1}
\end{gathered}
$$

Let's examine what happens in the longerm when the urban population is 25% and the urban is 75%.
 until the population ends up fixed on the $y=\frac{2}{3} x$ line. Since the population adds to 100%, this occurs at the $x=60$, $\mathrm{y}=40$ ratio. Notice that we come in parallel to $\mathrm{y}=-$
x , since $c_{2}(1)^{k}\binom{\frac{3}{2}}{1}$ is a constant,
so the only change is in $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

