• slope of a vector in \mathbb{R}^2

- slope of a vector in \mathbb{R}^2
- scalar multiplication of a vector

- slope of a vector in \mathbb{R}^2
- scalar multiplication of a vector
- addition of two vectors:

- slope of a vector in \mathbb{R}^2
- scalar multiplication of a vector
- addition of two vectors: diagonal of parallelogram if they are on different lines

- slope of a vector in \mathbb{R}^2
- scalar multiplication of a vector
- addition of two vectors: diagonal of parallelogram if they are on different lines
- \vec{v} is a *linear combination* of $\vec{v}_1, ..., \vec{v}_n$ if $\vec{v} = c_1 \vec{v}_1 + \cdots + c_n \vec{v}_n$, where the *weights* c_i are real.

- slope of a vector in \mathbb{R}^2
- scalar multiplication of a vector
- addition of two vectors: diagonal of parallelogram if they are on different lines
- \vec{v} is a *linear combination* of $\vec{v}_1, ..., \vec{v}_n$ if $\vec{v} = c_1 \vec{v}_1 + \cdots + c_n \vec{v}_n$, where the *weights* c_i are real.

Your weighted course average is a linear combination: .05 Effective Class Engagement + .05 HW + . 30 Problem Sets + .50 Exams + .10 Final Research Presentations

- slope of a vector in \mathbb{R}^2
- scalar multiplication of a vector
- addition of two vectors: diagonal of parallelogram if they are on different lines
- \vec{v} is a *linear combination* of $\vec{v}_1, ..., \vec{v}_n$ if $\vec{v} = c_1 \vec{v}_1 + \cdots + c_n \vec{v}_n$, where the *weights* c_i are real.

Your weighted course average is a linear combination:
.05 Effective Class Engagement + .05 HW + . 30 Problem
Sets + .50 Exams + .10 Final Research Presentations

• The *span* of $\vec{v}_1, ..., \vec{v}_n$ is the set of all linear combinations, over all possible weights. [span2dmovie]

- slope of a vector in \mathbb{R}^2
- scalar multiplication of a vector
- addition of two vectors: diagonal of parallelogram if they are on different lines
- \vec{v} is a *linear combination* of $\vec{v}_1, ..., \vec{v}_n$ if $\vec{v} = c_1 \vec{v}_1 + \cdots + c_n \vec{v}_n$, where the *weights* c_i are real.

Your weighted course average is a linear combination: .05 Effective Class Engagement + .05 HW + . 30 Problem Sets + .50 Exams + .10 Final Research Presentations

The span of \$\vec{v}_1, ..., \vec{v}_n\$ is the set of all linear combinations, over all possible weights. [span2dmovie]
 It is a linear space that we can find geometrically or algebraically using a generic vector

$$c_1\vec{v}_1+\cdots+c_n\vec{v}_n=egin{bmatrix} b_1\b_2\ dots \end{pmatrix}$$