Span and Linearly Independent Sets of Vectors

- 1. What is the definition for a set of vectors $\vec{v_1}, ..., \vec{v_n}$ to span the entire \mathbb{R}^m space they are in?
- 2. What is the definition for a set of vectors $\vec{v}_1, ..., \vec{v}_n$ to be linearly independent?
- 3. A set of vectors that span \mathbb{R}^2 but are not linearly independent?
- 4. A set of vectors that both span and are linearly independent in \mathbb{R}^2 ?
- 5. A set of vectors that are linearly independent in \mathbb{R}^2 but do not span \mathbb{R}^2 ?
- 6. A set of vectors that span \mathbb{R}^3 but are not linearly independent?
- 7. A set of vectors that both span and are linearly independent in \mathbb{R}^3 ?
- 8. A set of vectors that are linearly independent in \mathbb{R}^3 but do not span \mathbb{R}^3 ?
- 9. Revisit 1.4 #33, where A is a 4x3 matrix and b is a vector in ℝ⁴ with one unique solution.
 (a) Does A have a pivot in every column? Why or why not?
 - (b) Does A have a pivot in every row? Why or why not?
 - (c) What does Gauss-Jordan (reduced row echelon) look like for the augmented matrix $[A|\vec{b}]$, with the \vec{b} that gives a unique solution?
 - (d) Does $[A|\vec{b'}]$ have a unique solution for every $\vec{b'}$ in \mathbb{R}^4 ?
 - (e) What do the columns of A span geometrically?
 - (f) Are the columns of A linearly independent?
 - (g) What is the geometry of the intersection of the rows of $[A|\vec{b}]$?