1. What is the definition for a set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ to span the entire \mathbb{R}^{m} space they are in?
2. What is the definition for a set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ to be linearly independent?
3. A set of vectors that span \mathbb{R}^{2} but are not linearly independent?
4. A set of vectors that both span and are linearly independent in \mathbb{R}^{2} ?
5. A set of vectors that are linearly independent in \mathbb{R}^{2} but do not span \mathbb{R}^{2} ?
6. A set of vectors that span \mathbb{R}^{3} but are not linearly independent?
7. A set of vectors that both span and are linearly independent in \mathbb{R}^{3} ?
8. A set of vectors that are linearly independent in \mathbb{R}^{3} but do not span \mathbb{R}^{3} ?
9. Revisit $1.4 \# 33$, where A is a 4 x 3 matrix and \vec{b} is a vector in \mathbb{R}^{4} with one unique solution.
(a) Does A have a pivot in every column? Why or why not?
(b) Does A have a pivot in every row? Why or why not?
(c) What does Gauss-Jordan (reduced row echelon) look like for the augmented matrix $[A \mid \vec{b}]$, with the \vec{b} that gives a unique solution?
(d) Does $\left[A \mid \overrightarrow{b^{\prime}}\right]$ have a unique solution for every $\overrightarrow{b^{\prime}}$ in \mathbb{R}^{4} ?
(e) What do the columns of A span geometrically?
(f) Are the columns of A linearly independent?
(g) What is the geometry of the intersection of the rows of $[A \mid \vec{b}]$?
