Catalog description: A study of vectors, matrices and linear transformations, principally in two and three dimensions, including treatments of systems of linear equations, determinants, and eigenvalues. Prerequisite: MAT 1120 or permission of the instructor. Course Goals

- Develop algebraic skills
- Develop mathematical reasoning and problem solving
- Develop spatial visualization skills
- Learn about some applications of linear algebra
- An introduction to a computer algebra software system as it applies to linear algebra
Mapping of the Topics in the Catalog Description to the Text
Systems of Linear Equations: 1.1, 1.2, 1.5
Vectors: 1.3, 1.4, 1.7, 6.1
Matrices: earlier +2.1, 2.2, 2.3
Linear transformations 1.8, 1.9 (1-1 and onto eliminated), 2.7
Determinants: 3.1, 3.2, 3.3
Eigenvalues 2.8, 5.1, 5.2, 5.6

Test 2: cumulative + what we covered in 1.8, 1.9, 2.7, 2.8, 3.1, 3.2, 3.3, 5.1, 5.6, 6.1 \& apps

- Formatting same as prior tests. Test 2 is majority new material.
- hw, problem sets, \& clicker questions [solutions online]
- computations, definitions, critical reasoning \& "big picture"
- 1.1, 1.2 \& 1.5: Gaussian elimination, algebra and geometry of solutions of systems of equations...
- 1.4: connects everything together
- 1.3 and 1.7: algebra and geometry of vectors (linear combinations/mixing, span, li...)
- 2.1 and 2.2: matrix algebra: $A+B, c A, A^{T}, A B, A_{2 \times 2}^{-1}, \operatorname{det}\left(A_{2 \times 2}\right)$
- 2.3: theorem 8: what makes a matrix invertible [connects 2.2 to 1.1, 1.2, 1.3 and 1.7] \& condition \#
- 1.8 (62, 65, 67-68), 1.9 (70-75), 2.7: linear transformations
- apps: Hill cipher, computer graphics/animations, computer speed and reliability
- 3.1-3.3: algebra and geometry of determinants, invertibility
- 2.8: subspace, basis, column space and null space
- 5.1: eigenvectors \& eigenvalues alg \& geom, nullspace $(A-\lambda /$)
- 5.6: eigenvector decomposition, limit, trajectory \& populations
- 6.1 : length \& angle of a vector, orthogonal vectors

Rotation: $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ Dilation: $\left[\begin{array}{ll}c & 0 \\ 0 & c\end{array}\right]$ Horizontal Shear: $\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right]$
Projections: $y=x$ line: $\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right] x$-axis: $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] y$-axis: $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
Reflections: $y=x$ line: $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] x$-axis: $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] y$-axis: $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
Translation: $\left[\begin{array}{lll}1 & 0 & h \\ 0 & 1 & k \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{c}x+h \\ y+k \\ 1\end{array}\right] \quad$ Others: $\left[\begin{array}{lll}a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1\end{array}\right]$
Rotate a Figure about the point $\left[\begin{array}{l}4 \\ 9\end{array}\right]$:
$\left[\begin{array}{lll}1 & 0 & 4 \\ 0 & 1 & 9 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -4 \\ 0 & 1 & -9 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}x_{1} & \ldots & x_{p} \\ y_{1} & \ldots & y_{p} \\ 1 & \ldots & 1\end{array}\right]$
$\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ with columns: $\vec{u}=\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right], \vec{v}=\left[\begin{array}{c}-\sin (\theta) \\ \cos (\theta)\end{array}\right]$
Length (or norm) of $\vec{u}=\|\vec{u}\| \sqrt{\vec{u} \cdot \vec{u}}=\sqrt{\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right] \cdot\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right]}$

- Useful in keeping a car on a racetrack. If we don't normalize the vectors, the car size won't be preserved.
- Here inner product $\vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v}$ induces metric on the space $\|\vec{u}-\vec{v}\|$ is distance between vectors as in 1.3
- Generalized inner products for nonlinear/non-Euclidean satisfy axiomatic properties like distributivity, pulling out scalars, positive definite condition
- Two vectors are orthogonal if right angle between them. One formulation of the dot product $\vec{u} \cdot \vec{v}$ is $\|\vec{u}\|\|\|\vec{v}\| \cos \theta$, where θ is the angle between them, so the dot product is 0 exactly when the angle is $\frac{\pi}{2}$

Replacement $r_{j}^{\prime}=-3 r_{1}+r_{j}$ are shear matrices when written in
elementary matrix form like $\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right]$ or $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1\end{array}\right]$-preserve
the determinant (area, volume...) of a matrix and turns parallelograms and parallelopipeds formed by the vectors into rectangles and rectangular prisms

In verse

What Makes You Invertible

Music by One Direction \& idea adapted from Art Benjamin Interpreted by Dr. Sarah and Joel Landsberg
Baby you'll light up if one of these facts is so, but you'll need n square columns and rows:

- Like when \mathbb{R}^{n} is the span of the matrix columns
- That's when you know oh-oh invertible!
- If always you uniquely solve $A \vec{x}$ is \vec{b}
- Or if your columns have no linear dependency
- Or if matrix reduces to identity

Not zero - no no
That makes it not invertible!
Shout out if one of these facts is so... but you'll need n square columns and rows:

- Like when your matrix determinant's non-zero

Is when you know oh-oh-that makes it invertible!

Subspace: it's linear (linear combinations)
Subspace basis: span (full row pivots) + l.i. (full column pivots)
reduced $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
column space of $A=$ span of columns [$c_{1} \vec{v}_{1}+\ldots$] or equations like $b_{1}-2 b_{2}+b_{3}=0$ from $[A \mid \vec{b}]$ reduction.
A basis is \{column 1, ... of original matrix $\}$ - they span the column space via linear combinations and are l.i.
null space of $A=$ solutions of $A \vec{x}=\overrightarrow{0}$. Aug: $\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
Parametrize: $s\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$. A basis is $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$

- $A \vec{x}=\lambda \vec{x}$: matrix multiplication to scalar multiplication
- determinant $(A-\lambda I)=0$ or Maple for λ
- plug in each λ for nullspace of $(A-\lambda I)$ or use Maple for basis for eigenspace
- $A \vec{x}=\lambda \vec{x}$: A keeps eigenvectors \vec{x} on the same line scaled by λ, so can reason geometrically for transformations
A := Matrix([[21/40,3/20],[19/240,39/40]]);
Eigenvectors(A); $\left[\begin{array}{l}\frac{1}{2} \\ 1\end{array}\right],\left[\begin{array}{cc}-6 & \frac{6}{19} \\ 1 & 1\end{array}\right]$
The eigenvector decomposition and trajectory:
$\left[\begin{array}{l}\text { Owls }_{k} \\ \text { Rats }_{k}\end{array}\right]=c_{1}\left(\frac{1}{2}\right)^{k}\left[\begin{array}{c}-6 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}\frac{6}{19} \\ 1\end{array}\right]$

